Difference between revisions of "Status of Donovan's conjecture"
(Classes of groups section) |
|||
Line 36: | Line 36: | ||
|} | |} | ||
− | + | == Donovan's conjecture by class of group or block == | |
[[Image:under-construction.png|50px|left]] | [[Image:under-construction.png|50px|left]] | ||
+ | |||
+ | |||
+ | In the table, the column headed Donovan's conjecture indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>. | ||
+ | |||
+ | Note that knowing the <math>\mathcal{O}</math>-Donovan conjecture or Puig's conjecture for blocks for a class of groups does not necessarily mean that the <math>\mathcal{O}</math>-lifts or source algebras of the <math>k</math>-Morita equivalence classes involved are known. This is only known for elements of the Morita equivalence class which occur as blocks of groups in that class. | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
− | ! scope="col"| Groups | + | ! scope="col"| Groups |
+ | ! scope="col"| Blocks | ||
! scope="col"| Donovan's conjecture | ! scope="col"| Donovan's conjecture | ||
! scope="col"| Puig's conjecture | ! scope="col"| Puig's conjecture | ||
Line 48: | Line 54: | ||
! scope="col"| Notes | ! scope="col"| Notes | ||
|- | |- | ||
− | |<math>p</math>-solvable groups || <math>\mathcal{O}</math> || Yes || | + | |<math>p</math>-solvable groups || All || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Ku81]]], Puig's conjecture by [[References|[Pu09]]] || See [[References|[Li18d,10.6.2]]] |
+ | |- | ||
+ | |Symmetric groups || All || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Sc91]]], Puig's conjecture by [[References|[Pu94]]] || | ||
+ | |- | ||
+ | |Double covers of symmetric groups || All || <math>\mathcal{O}</math> || Yes || [[References|[Ke96]]] || | ||
+ | |- | ||
+ | |Alternating groups and their double covers || All || <math>\mathcal{O}</math> || Yes || [[References|[Ke02], [Ke96]]] || | ||
+ | |- | ||
+ | |<math>GL_n(q)</math> for fixed <math>q</math> || Unipotent blocks || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Jo96]]], Puig's conjecture by [[References|[Ke01]]] || | ||
+ | |- | ||
+ | |Classical groups || Unipotent blocks for linear primes || <math>\mathcal{O}</math> || Yes || [[References|[HK00], [HK05]]] || Detailed results beyond those stated here | ||
|- | |- | ||
− | | | + | |Arbitrary groups || Blocks with [[Glossary#Trivial intersection subgroup|trivial intersection]] defect groups || <math>\mathcal{O}</math> || No || [[References|[AE04]]] || |
|} | |} |
Revision as of 13:44, 13 October 2018
In this page we list cases where Donovan's conjecture is known to hold.
Donovan's conjecture by [math]p[/math]-group
In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].
[math]p[/math]-groups | Donovan's conjecture | Puig's conjecture | References | Notes |
---|---|---|---|---|
Cyclic [math]p[/math]-groups | [math]\mathcal{O}[/math] | Yes | [Li96] | |
[math]C_2 \times C_2[/math] | [math]\mathcal{O}[/math] | Yes | [CEKL11] | Donovan's conjecture without CFSG, Puig using CFSG |
Abelian [math]2[/math]-groups | [math]\mathcal{O}[/math] | No | [EEL18] | |
Abelian [math]3[/math]-groups | No | No | [Ko03] | Puig's conjecture known for principal blocks |
Dihedral [math]2[/math]-groups | [math]k[/math] | No | [Er87] | |
Semidihedral [math]2[/math]-groups | [math]k[/math] | No | [Er88c], [Er90b] | |
[math]Q_8[/math] | [math]\mathcal{O}[/math] | No | [Er88a], [Er88b], [HKL07], [Ei16] | |
Generalised quaternion [math]2[/math]-groups | No | No | [Er88a], [Er88b] | Donovan's conjecture over [math]k[/math] known if [math]l(B) \neq 2[/math] |
Minimal nonabelian [math]2[/math]-groups [math]\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] | [math]\mathcal{O}[/math] | No | [EKS12] | |
Metacyclic [math]2[/math]-groups of nonmaximal class | [math]\mathcal{O}[/math] | No | [Sa12b] | All blocks nilpotent |
Donovan's conjecture by class of group or block
In the table, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].
Note that knowing the [math]\mathcal{O}[/math]-Donovan conjecture or Puig's conjecture for blocks for a class of groups does not necessarily mean that the [math]\mathcal{O}[/math]-lifts or source algebras of the [math]k[/math]-Morita equivalence classes involved are known. This is only known for elements of the Morita equivalence class which occur as blocks of groups in that class.
Groups | Blocks | Donovan's conjecture | Puig's conjecture | References | Notes |
---|---|---|---|---|---|
[math]p[/math]-solvable groups | All | [math]\mathcal{O}[/math] | Yes | Over [math]k[/math] by [Ku81], Puig's conjecture by [Pu09] | See [Li18d,10.6.2] |
Symmetric groups | All | [math]\mathcal{O}[/math] | Yes | Over [math]k[/math] by [Sc91], Puig's conjecture by [Pu94] | |
Double covers of symmetric groups | All | [math]\mathcal{O}[/math] | Yes | [Ke96] | |
Alternating groups and their double covers | All | [math]\mathcal{O}[/math] | Yes | [Ke02], [Ke96] | |
[math]GL_n(q)[/math] for fixed [math]q[/math] | Unipotent blocks | [math]\mathcal{O}[/math] | Yes | Over [math]k[/math] by [Jo96], Puig's conjecture by [Ke01] | |
Classical groups | Unipotent blocks for linear primes | [math]\mathcal{O}[/math] | Yes | [HK00], [HK05] | Detailed results beyond those stated here |
Arbitrary groups | Blocks with trivial intersection defect groups | [math]\mathcal{O}[/math] | No | [AE04] |