Difference between revisions of "Status of Donovan's conjecture"

From Block library
Jump to: navigation, search
(Classes of groups section)
Line 36: Line 36:
 
|}
 
|}
  
<!-- == Donovan's conjecture by class of group or block ==
+
== Donovan's conjecture by class of group or block ==
  
 
[[Image:under-construction.png|50px|left]]
 
[[Image:under-construction.png|50px|left]]
 +
 +
 +
In the table, the column headed Donovan's conjecture indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>.
 +
 +
Note that knowing the <math>\mathcal{O}</math>-Donovan conjecture or Puig's conjecture for blocks for a class of groups does not necessarily mean that the <math>\mathcal{O}</math>-lifts or source algebras of the <math>k</math>-Morita equivalence classes involved are known. This is only known for elements of the Morita equivalence class which occur as blocks of groups in that class.
  
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! scope="col"| Groups/blocks
+
! scope="col"| Groups
 +
! scope="col"| Blocks
 
! scope="col"| Donovan's conjecture
 
! scope="col"| Donovan's conjecture
 
! scope="col"| Puig's conjecture
 
! scope="col"| Puig's conjecture
Line 48: Line 54:
 
! scope="col"| Notes
 
! scope="col"| Notes
 
|-
 
|-
|<math>p</math>-solvable groups || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Ku81]]], Puig's conjecture by [[References|[Pu09]]] || See [[References|[Li18d,10.6.2]]]
+
|<math>p</math>-solvable groups || All || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Ku81]]], Puig's conjecture by [[References|[Pu09]]] || See [[References|[Li18d,10.6.2]]]
 +
|-
 +
|Symmetric groups || All || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Sc91]]], Puig's conjecture by [[References|[Pu94]]] ||
 +
|-
 +
|Double covers of symmetric groups || All || <math>\mathcal{O}</math> || Yes || [[References|[Ke96]]] ||
 +
|-
 +
|Alternating groups and their double covers || All || <math>\mathcal{O}</math> || Yes || [[References|[Ke02], [Ke96]]] ||
 +
|-
 +
|<math>GL_n(q)</math> for fixed <math>q</math> || Unipotent blocks || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Jo96]]], Puig's conjecture by [[References|[Ke01]]] ||
 +
|-
 +
|Classical groups || Unipotent blocks for linear primes ||  <math>\mathcal{O}</math> || Yes || [[References|[HK00], [HK05]]] || Detailed results beyond those stated here
 
|-
 
|-
|Symmetric groups || -->
+
|Arbitrary groups || Blocks with [[Glossary#Trivial intersection subgroup|trivial intersection]] defect groups || <math>\mathcal{O}</math> || No || [[References|[AE04]]] ||
 
|}
 
|}

Revision as of 13:44, 13 October 2018

Peter Donovan

In this page we list cases where Donovan's conjecture is known to hold.

Donovan's conjecture by [math]p[/math]-group

In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].

[math]p[/math]-groups Donovan's conjecture Puig's conjecture References Notes
Cyclic [math]p[/math]-groups [math]\mathcal{O}[/math] Yes [Li96]
[math]C_2 \times C_2[/math] [math]\mathcal{O}[/math] Yes [CEKL11] Donovan's conjecture without CFSG, Puig using CFSG
Abelian [math]2[/math]-groups [math]\mathcal{O}[/math] No [EEL18]
Abelian [math]3[/math]-groups No No [Ko03] Puig's conjecture known for principal blocks
Dihedral [math]2[/math]-groups [math]k[/math] No [Er87]
Semidihedral [math]2[/math]-groups [math]k[/math] No [Er88c], [Er90b]
[math]Q_8[/math] [math]\mathcal{O}[/math] No [Er88a], [Er88b], [HKL07], [Ei16]
Generalised quaternion [math]2[/math]-groups No No [Er88a], [Er88b] Donovan's conjecture over [math]k[/math] known if [math]l(B) \neq 2[/math]
Minimal nonabelian [math]2[/math]-groups [math]\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] [math]\mathcal{O}[/math] No [EKS12]
Metacyclic [math]2[/math]-groups of nonmaximal class [math]\mathcal{O}[/math] No [Sa12b] All blocks nilpotent

Donovan's conjecture by class of group or block

Under-construction.png


In the table, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].

Note that knowing the [math]\mathcal{O}[/math]-Donovan conjecture or Puig's conjecture for blocks for a class of groups does not necessarily mean that the [math]\mathcal{O}[/math]-lifts or source algebras of the [math]k[/math]-Morita equivalence classes involved are known. This is only known for elements of the Morita equivalence class which occur as blocks of groups in that class.

Groups Blocks Donovan's conjecture Puig's conjecture References Notes
[math]p[/math]-solvable groups All [math]\mathcal{O}[/math] Yes Over [math]k[/math] by [Ku81], Puig's conjecture by [Pu09] See [Li18d,10.6.2]
Symmetric groups All [math]\mathcal{O}[/math] Yes Over [math]k[/math] by [Sc91], Puig's conjecture by [Pu94]
Double covers of symmetric groups All [math]\mathcal{O}[/math] Yes [Ke96]
Alternating groups and their double covers All [math]\mathcal{O}[/math] Yes [Ke02], [Ke96]
[math]GL_n(q)[/math] for fixed [math]q[/math] Unipotent blocks [math]\mathcal{O}[/math] Yes Over [math]k[/math] by [Jo96], Puig's conjecture by [Ke01]
Classical groups Unipotent blocks for linear primes [math]\mathcal{O}[/math] Yes [HK00], [HK05] Detailed results beyond those stated here
Arbitrary groups Blocks with trivial intersection defect groups [math]\mathcal{O}[/math] No [AE04]