Difference between revisions of "Status of Donovan's conjecture"

From Block library
Jump to: navigation, search
Line 4: Line 4:
  
 
== Donovan's conjecture by <math>p</math>-group ==
 
== Donovan's conjecture by <math>p</math>-group ==
 
[[Image:under-construction.png|50px|left]]
 
  
 
In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>.
 
In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>.
Line 36: Line 34:
 
|-
 
|-
 
|Metacyclic <math>2</math>-groups of nonmaximal class || <math>\mathcal{O}</math> || No || [[References|[Sa12b]]] || All blocks nilpotent
 
|Metacyclic <math>2</math>-groups of nonmaximal class || <math>\mathcal{O}</math> || No || [[References|[Sa12b]]] || All blocks nilpotent
 +
|}
 +
 +
<!-- == Donovan's conjecture by class of group or block ==
 +
 +
[[Image:under-construction.png|50px|left]]
 +
 +
{| class="wikitable"
 +
|-
 +
! scope="col"| Groups/blocks
 +
! scope="col"| Donovan's conjecture
 +
! scope="col"| Puig's conjecture
 +
! scope="col"| References
 +
! scope="col"| Notes
 +
|-
 +
|<math>p</math>-solvable groups || <math>\mathcal{O}</math> || Yes ||  Over <math>k</math> by [[References|[Ku81]]], Puig's conjecture by [[References|[Pu09]]] || See [[References|[Li18d,10.6.2]]]
 +
|-
 +
|Symmetric groups || -->
 
|}
 
|}

Revision as of 09:09, 13 October 2018

Peter Donovan

In this page we list cases where Donovan's conjecture is known to hold.

Donovan's conjecture by [math]p[/math]-group

In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].

[math]p[/math]-groups Donovan's conjecture Puig's conjecture References Notes
Cyclic [math]p[/math]-groups [math]\mathcal{O}[/math] Yes [Li96]
[math]C_2 \times C_2[/math] [math]\mathcal{O}[/math] Yes [CEKL11] Donovan's conjecture without CFSG, Puig using CFSG
Abelian [math]2[/math]-groups [math]\mathcal{O}[/math] No [EEL18]
Abelian [math]3[/math]-groups No No [Ko03] Puig's conjecture known for principal blocks
Dihedral [math]2[/math]-groups [math]k[/math] No [Er87]
Semidihedral [math]2[/math]-groups [math]k[/math] No [Er88c], [Er90b]
[math]Q_8[/math] [math]\mathcal{O}[/math] No [Er88a], [Er88b], [HKL07], [Ei16]
Generalised quaternion [math]2[/math]-groups No No [Er88a], [Er88b] Donovan's conjecture over [math]k[/math] known if [math]l(B) \neq 2[/math]
Minimal nonabelian [math]2[/math]-groups [math]\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] [math]\mathcal{O}[/math] No [EKS12]
Metacyclic [math]2[/math]-groups of nonmaximal class [math]\mathcal{O}[/math] No [Sa12b] All blocks nilpotent

|}