Difference between revisions of "M(8,2,1)"

From Block library
Jump to: navigation, search
(Projective indecomposable modules)
 
Line 24: Line 24:
 
|O-morita-frob = 1
 
|O-morita-frob = 1
 
|Pic-O = <math>(C_4 \times C_2):(C_2 \times C_2 \times C_2)</math>
 
|Pic-O = <math>(C_4 \times C_2):(C_2 \times C_2 \times C_2)</math>
 +
|PIgroup =
 
|source? =
 
|source? =
 
|sourcereps =
 
|sourcereps =
Line 29: Line 30:
 
|k-derived = Forms a derived equivalence class
 
|k-derived = Forms a derived equivalence class
 
|O-derived-known? = Yes
 
|O-derived-known? = Yes
 +
|coveringblocks = M(8,2,1)
 +
|coveredblocks = M(8,2,1)
 +
|pcoveringblocks = [[M(16,2,1)]], [[M(16,3,1)]], [[M(16,4,1)]],
 +
[[M(16,5,1)]], [[M(16,6,1)]], [[M(16,10,1)]],
 +
[[M(16,11,1)]], [[M(16,12,1)]], [[M(16,13,1)]]
 
}}
 
}}
  
Line 41: Line 47:
  
 
== Other notatable representatives ==
 
== Other notatable representatives ==
 
== Covering blocks and covered blocks ==
 
 
Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
 
 
If <math>B</math> or <math>b</math> is in M(8,2,1), then <math>B</math> and <math>b</math> must be Morita equivalent.
 
  
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==

Latest revision as of 11:33, 1 November 2018

M(8,2,1) - [math]k(C_4 \times C_2)[/math]
M(4,2,1)quiver.png
Representative: [math]k(C_4 \times C_2)[/math]
Defect groups: [math]C_4 \times C_2[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 8
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{c} 8 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} (C_4 \times C_2)[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math](C_4 \times C_2):(C_2 \times C_2 \times C_2)[/math]
[math]PI(B)=[/math]
Source algebras known?
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: Forms a derived equivalence class
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: M(8,2,1)
[math]p'[/math]-index covered blocks: M(8,2,1)
Index [math]p[/math] covering blocks: M(16,2,1), M(16,3,1), M(16,4,1),

M(16,5,1), M(16,6,1), M(16,10,1),

M(16,11,1), M(16,12,1), M(16,13,1)


These are nilpotent blocks.

Basic algebra

Quiver: a:<1,1>, b:<1,1>

Relations w.r.t. [math]k[/math]: a^4=b^2=ab+ba=0

Other notatable representatives

Projective indecomposable modules

Labelling the unique simple [math]B[/math]-module by [math]1[/math], the unique projective indecomposable module has Loewy structure as follows:

[math]\begin{array}{c} 1 \\ 1 \ 1 \\ 1 \ 1 \\ 1 \ 1 \\ 1 \\ \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_4 \times C_2[/math]