Difference between revisions of "M(8,5,8)"

From Block library
Jump to: navigation, search
(Added PIMs and quiver)
Line 43: Line 43:
 
== Basic algebra ==
 
== Basic algebra ==
  
'''Quiver:'''  
+
'''Quiver:''' a:<4,1>, b:<1,4>, c:<2,4>, d:<4,2>, e:<4,3>, f:<3,4>, g:<4,5>, h:<5,4>
  
 
'''Relations w.r.t. <math>k</math>:'''  
 
'''Relations w.r.t. <math>k</math>:'''  
Line 51: Line 51:
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==
  
<!--Labelling the simple <math>B</math>-modules by <math>S_1, S_2, S_3</math>, the projective indecomposable modules have Loewy structure as follows:
+
Labelling the simple <math>B</math>-modules by <math>1,2,3,4,5</math>, the projective indecomposable modules have Loewy structure as follows:
  
<math>\begin{array}{ccccccc}
+
<math>\begin{array}{ccccc}
 
   \begin{array}{c}
 
   \begin{array}{c}
     S_1 \\
+
     1 \\
    S_2 S_3 S_5 \\
+
    4 \\
    S_4 S_6 S_7 \\
+
    1 \ 2 \ 3 \ 5 \\
     S_1 \\
+
    4 \ 4 \\
 +
    1 \ 2 \ 3 \ 5 \\
 +
    4 \\
 +
     1 \\
 
   \end{array},
 
   \end{array},
 
&
 
&
   \begin{array}{ccc}
+
\begin{array}{c}
     S_2 \\
+
    2 \\
    S_3 S_4 S_6 \\
+
    4 \\
    S_1 S_5 S_7 \\
+
    1 \ 2 \ 3 \ 5 \\
     S_2 \\  
+
    4 \ 4 \\
   \end{array},
+
    1 \ 2 \ 3 \ 5 \\
&  
+
    4 \\
  \begin{array}{ccc}
+
    2 \\
     S_3 \\
+
  \end{array},
    S_4 S_5 S_7 \\
+
&
    S_1 S_2 S_6 \\
+
\begin{array}{c}
     S_3 \\  
+
    3 \\
 +
    4 \\
 +
    1 \ 2 \ 3 \ 5 \\
 +
    4 \ 4 \\
 +
    1 \ 2 \ 3 \ 5 \\
 +
    4 \\
 +
    3 \\
 +
   \end{array},
 +
&
 +
\begin{array}{c}
 +
     4 \\
 +
    1 \ 2 \ 3 \ 5 \\
 +
    4 \ 4 \ 4 \\
 +
    1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 5 \\
 +
    4 \ 4 \ 4 \\
 +
    1 \ 2 \ 3 \ 5 \\
 +
     4 \\
 +
   \end{array},
 +
&
 +
\begin{array}{c}
 +
     5 \\
 +
    4 \\
 +
    1 \ 2 \ 3 \\
 +
    4 \\
 +
    1 \ 2 \ 3 \\
 +
    4 \\
 +
     5 \\
 
   \end{array}
 
   \end{array}
 
&
 
  \begin{array}{ccc}
 
    S_4 \\
 
    S_5 S_6 S_1 \\
 
    S_2 S_3 S_7 \\ 
 
    S_4 \\
 
  \end{array}, 
 
&
 
  \begin{array}{ccc}
 
    S_5 \\
 
    S_6 S_7 S_2 \\
 
    S_1 S_3 S_4 \\ 
 
    S_3 \\
 
  \end{array}, 
 
&
 
  \begin{array}{ccc}
 
    S_6 \\
 
    S_7 S_1 S_3 \\
 
    S_2 S_4 S_5 \\ 
 
    S_6 \\
 
  \end{array}, 
 
&
 
  \begin{array}{ccc}
 
    S_7 \\
 
    S_1 S_2 S_4 \\
 
    S_3 S_5 S_6 \\ 
 
    S_7 \\
 
  \end{array}
 
 
\end{array}
 
\end{array}
</math>-->
+
</math>
  
 
== Irreducible characters ==
 
== Irreducible characters ==

Revision as of 16:09, 5 October 2018

M(8,5,8) - [math]B_0(k(\rm Aut (SL_2(8)))[/math]
M(8,5,8)quiver.png
Representative: [math]B_0(k(\rm Aut (SL_2(8)))[/math]
Defect groups: [math]C_2 \times C_2 \times C_2[/math]
Inertial quotients: [math]C_7:C_3[/math]
[math]k(B)=[/math] 8
[math]l(B)=[/math] 5
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{ccccccc} 4 & 2 & 2 & 4 & 2 \\ 2 & 4 & 2 & 4 & 2 \\ 2 & 2 & 4 & 4 & 2 \\ 4 & 4 & 4 & 8 & 3 \\ 2 & 2 & 2 & 3 & 2 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}(\rm Aut (SL_2(8)))[/math]
Decomposition matrices: [math]\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,5,6), M(8,5,7)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

Basic algebra

Quiver: a:<4,1>, b:<1,4>, c:<2,4>, d:<4,2>, e:<4,3>, f:<3,4>, g:<4,5>, h:<5,4>

Relations w.r.t. [math]k[/math]:

Other notatable representatives

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]1,2,3,4,5[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccccc} \begin{array}{c} 1 \\ 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \ 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \\ 1 \\ \end{array}, & \begin{array}{c} 2 \\ 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \ 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \\ 2 \\ \end{array}, & \begin{array}{c} 3 \\ 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \ 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \\ 3 \\ \end{array}, & \begin{array}{c} 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \ 4 \ 4 \\ 1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 5 \\ 4 \ 4 \ 4 \\ 1 \ 2 \ 3 \ 5 \\ 4 \\ \end{array}, & \begin{array}{c} 5 \\ 4 \\ 1 \ 2 \ 3 \\ 4 \\ 1 \ 2 \ 3 \\ 4 \\ 5 \\ \end{array} \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_2 \times C_2 \times C_2[/math]