Difference between revisions of "M(8,5,8)"
|  (Created page with "{{blockbox |title = M(8,5,8) - <math>B_0(k(\rm Aut (SL_2(8)))</math>  |image = M(8,5,8)quiver.png |representative =  <math>B_0(k(\rm Aut (SL_2(8)))</math> |defect = C2xC2xC2...") | |||
| Line 19: | Line 19: | ||
| |inertial-morita-inv? = Yes | |inertial-morita-inv? = Yes | ||
| |O-morita? = Yes | |O-morita? = Yes | ||
| − | |O-morita = <math>\mathcal{O} (( | + | |O-morita = <math>B_0(\mathcal{O}(\rm Aut (SL_2(8)))</math> | 
| |decomp = <math>\left( \begin{array}{ccccc} | |decomp = <math>\left( \begin{array}{ccccc} | ||
| 1 & 0 & 0 & 0 & 0 \\ | 1 & 0 & 0 & 0 & 0 \\ | ||
Revision as of 10:41, 5 October 2018
M(8,5,8) - [math]B_0(k(\rm Aut (SL_2(8)))[/math]
| Representative: | [math]B_0(k(\rm Aut (SL_2(8)))[/math] | 
|---|---|
| Defect groups: | [math]C_2 \times C_2 \times C_2[/math] | 
| Inertial quotients: | [math]C_7:C_3[/math] | 
| [math]k(B)=[/math] | 8 | 
| [math]l(B)=[/math] | 5 | 
| [math]{\rm mf}_k(B)=[/math] | 1 | 
| [math]{\rm Pic}_k(B)=[/math] | |
| Cartan matrix: | [math]\left( \begin{array}{ccccccc} 4 & 2 & 2 & 4 & 2 \\ 2 & 4 & 2 & 4 & 2 \\ 2 & 2 & 4 & 4 & 2 \\ 4 & 4 & 4 & 8 & 3 \\ 2 & 2 & 2 & 3 & 2 \\ \end{array} \right)[/math] | 
| Defect group Morita invariant? | Yes | 
| Inertial quotient Morita invariant? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes known? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}(\rm Aut (SL_2(8)))[/math] | 
| Decomposition matrices: | [math]\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ \end{array}\right)[/math] | 
| [math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 | 
| [math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
| [math]PI(B)=[/math] | {{{PIgroup}}} | 
| Source algebras known? | No | 
| Source algebra reps: | |
| [math]k[/math]-derived equiv. classes known? | Yes | 
| [math]k[/math]-derived equivalent to: | M(8,5,6), M(8,5,7) | 
| [math]\mathcal{O}[/math]-derived equiv. classes known? | Yes | 
| [math]p'[/math]-index covering blocks: | |
| [math]p'[/math]-index covered blocks: | |
| Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} | 
Contents
Basic algebra
Quiver:
Relations w.r.t. [math]k[/math]:
Other notatable representatives
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.

