Difference between revisions of "M(16,1,1)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(16,1,1) - <math>kC_{16}</math> |image = M(2,1,1)quiver.png |representative = <math>kC_{16}</math> |defect = <math>C_{16}</math> |inertialquotie...")
 
(Pic_k)
 
Line 8: Line 8:
 
|l(B) = 1
 
|l(B) = 1
 
|k-morita-frob = 1  
 
|k-morita-frob = 1  
|Pic-k=
+
|Pic-k = <math>k^{14}:k^*</math>
 
|cartan = <math>\left( \begin{array}{c}
 
|cartan = <math>\left( \begin{array}{c}
 
16 \\
 
16 \\

Latest revision as of 14:22, 7 October 2018

M(16,1,1) - [math]kC_{16}[/math]
M(2,1,1)quiver.png
Representative: [math]kC_{16}[/math]
Defect groups: [math]C_{16}[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 16
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math] [math]k^{14}:k^*[/math]
Cartan matrix: [math]\left( \begin{array}{c} 16 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} C_{16}[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{L}(B)=C_{16}:(C_4 \times C_2)[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps: [math]kC_{16}[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: Forms a derived equivalence class
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: M(16,1,1)
[math]p'[/math]-index covered blocks: M(16,1,1)
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}


These are nilpotent blocks.

Basic algebra

Quiver: a:<1,1>

Relations w.r.t. [math]k[/math]: [math]a^{16}=0[/math]

Other notatable representatives

Projective indecomposable modules

Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:

[math]\begin{array}{c} S_1 \\ S_1 \\ \vdots \\ S_1 \\ \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_{16}[/math]