Difference between revisions of "M(8,3,2)"
(Created page with "{{blockbox |title = M(8,3,2) - <math>B_0(kPGL_2(5))</math> |image = M(5,1,3)quiver.png |representative = <math>B_0(kPGL_2(5))</math> |defect = <math>D_8</math> |inert...") |
|||
Line 35: | Line 35: | ||
}} | }} | ||
− | These are [[ | + | These are [[Tame blocks|tame blocks]], and appear in the family <math>D(2 {\cal A})</math> in Erdmann's classification (see [[References|[Er87] ]]). The classification of <math>\mathcal{O}</math>-blocks is only known in the nilpotent case. Derived equivalences over <math>k</math> are established in [[References|[Ho97]]] and [[References|[Li94b]]]. |
== Basic algebra == | == Basic algebra == |
Revision as of 09:33, 24 September 2018
M(8,3,2) - [math]B_0(kPGL_2(5))[/math]
Representative: | [math]B_0(kPGL_2(5))[/math] |
---|---|
Defect groups: | [math]D_8[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 5 |
[math]l(B)=[/math] | 2 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{cc} 3 & 4 \\ 4 & 8 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | |
[math]\mathcal{O}[/math]-Morita classes: | |
Decomposition matrices: | [math]\left( \begin{array}{c} 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,3,3) and M(8,3,4) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are tame blocks, and appear in the family [math]D(2 {\cal A})[/math] in Erdmann's classification (see [Er87] ). The classification of [math]\mathcal{O}[/math]-blocks is only known in the nilpotent case. Derived equivalences over [math]k[/math] are established in [Ho97] and [Li94b].
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,1>, c:<2,2>
Relations w.r.t. [math]k[/math]: [math]ab=c^2=0[/math], [math](cba)^2=(bac)^2[/math]
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2[/math], the projective indecomposable modules have Loewy structure as follows:
Irreducible characters
[math]k_0(B)=4, k_1(B)=1[/math]