Difference between revisions of "Notation"
Line 9: | Line 9: | ||
|<math>l(B)</math> || Number of isomorphism classes of simple <math>B</math>-modules || | |<math>l(B)</math> || Number of isomorphism classes of simple <math>B</math>-modules || | ||
|- | |- | ||
− | | <math>{\rm mf_k(B)}</math> || The Morita-Frobenius number of <math>kB</math> || [Ke04] | + | | <math>{\rm mf_k(B)}</math> || The Morita-Frobenius number of <math>kB</math> || [[References|[Ke04] ]] |
|- | |- | ||
|<math>{\rm mf_\mathcal{O}(B)}</math> || The <math>\mathcal{O}</math>-Morita Frobenius number || | |<math>{\rm mf_\mathcal{O}(B)}</math> || The <math>\mathcal{O}</math>-Morita Frobenius number || | ||
Line 16: | Line 16: | ||
|- | |- | ||
|<math>{\rm Pic}_k(B)</math> || The Picard group of <math>kB</math> || | |<math>{\rm Pic}_k(B)</math> || The Picard group of <math>kB</math> || | ||
+ | |- | ||
+ | |<math>\mathcal{T}(B)</math> || The subgroup of <math>{\rm Pic}_\mathcal{O}(B)</math> consisting of trivial source bimodules || [[References|[BKL18] ]] | ||
+ | |- | ||
+ | |<math>\mathcal{L}(B)</math> || The subgroup of <math>{\rm Pic}_\mathcal{O}(B)</math> consisting of linear source bimodules || [[References|[BKL18] ]] | ||
+ | |- | ||
+ | |<math>\mathcal{E}(B)</math> || The subgroup of <math>{\rm Pic}_\mathcal{O}(B)</math> consisting of endopermutation source bimodules || [[References|[BKL18] ]] | ||
+ | |- | ||
+ | |<math>M(x,y,z)</math> || A <math>k</math>-Morita equivalence class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class. | ||
|} | |} |
Revision as of 13:51, 30 August 2018
[math](K,\mathcal{O},k)[/math] is a [math]p[/math]-modular system, where [math]\mathcal{O}[/math] is a complete discrete valuation ring with algebraically closed residue field [math]k=\mathcal{O}/J(\mathcal{O})[/math] and [math]K[/math] is the field of fractions of [math]\mathcal{O}[/math], of characteristic zero. In order to make a consistent choice of [math](K,\mathcal{O},k)[/math] we take [math]k[/math] to be the algebraic closure of the field with [math]p[/math] elements and [math]\mathcal{O}[/math] to be the ring of Witt vectors for [math]k[/math] This has the disadvantage that for [math]G[/math] a finite group [math]KG[/math] need not contain the primitive character idempotents, but this condition can usually be avoided.
In the below, [math]G[/math] is a finite group and [math]B[/math] is a block of [math]\mathcal{O}G[/math]. If it is clear from context, [math]B[/math] may also mean the corresponding block of [math]kG[/math]. When it is not otherwise clear from context [math]kB[/math] will refer to the block of [math]kG[/math].
[math]k(B)[/math] | Number of irreducible characters in [math]B[/math] | |
[math]l(B)[/math] | Number of isomorphism classes of simple [math]B[/math]-modules | |
[math]{\rm mf_k(B)}[/math] | The Morita-Frobenius number of [math]kB[/math] | [Ke04] |
[math]{\rm mf_\mathcal{O}(B)}[/math] | The [math]\mathcal{O}[/math]-Morita Frobenius number | |
[math]{\rm Pic}_\mathcal{O}(B)[/math] | The Picard group of [math]B[/math] | |
[math]{\rm Pic}_k(B)[/math] | The Picard group of [math]kB[/math] | |
[math]\mathcal{T}(B)[/math] | The subgroup of [math]{\rm Pic}_\mathcal{O}(B)[/math] consisting of trivial source bimodules | [BKL18] |
[math]\mathcal{L}(B)[/math] | The subgroup of [math]{\rm Pic}_\mathcal{O}(B)[/math] consisting of linear source bimodules | [BKL18] |
[math]\mathcal{E}(B)[/math] | The subgroup of [math]{\rm Pic}_\mathcal{O}(B)[/math] consisting of endopermutation source bimodules | [BKL18] |
[math]M(x,y,z)[/math] | A [math]k[/math]-Morita equivalence class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class. |