Difference between revisions of "Glossary"
(# lifts) |
|||
Line 1: | Line 1: | ||
This page will contain an alphabetical glossary of terms used. | This page will contain an alphabetical glossary of terms used. | ||
+ | |||
+ | === # lifts / <math>\mathcal{O}</math> === | ||
+ | |||
+ | The number of <math>\mathcal{O}</math>-Morita equivalence classes of blocks reducing to a representative of the given <math>k</math>-class. | ||
=== Picard group === | === Picard group === | ||
Let <math>R</math> be a commutative ring and <math>A</math> an <math>R</math>-algebra. The Picard group <math>{\rm Pic}_R(A)</math> has elements isomorphism classes of <math>A</math>-<math>A</math>-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over <math>A</math>. | Let <math>R</math> be a commutative ring and <math>A</math> an <math>R</math>-algebra. The Picard group <math>{\rm Pic}_R(A)</math> has elements isomorphism classes of <math>A</math>-<math>A</math>-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over <math>A</math>. |
Revision as of 08:21, 15 September 2018
This page will contain an alphabetical glossary of terms used.
# lifts / [math]\mathcal{O}[/math]
The number of [math]\mathcal{O}[/math]-Morita equivalence classes of blocks reducing to a representative of the given [math]k[/math]-class.
Picard group
Let [math]R[/math] be a commutative ring and [math]A[/math] an [math]R[/math]-algebra. The Picard group [math]{\rm Pic}_R(A)[/math] has elements isomorphism classes of [math]A[/math]-[math]A[/math]-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over [math]A[/math].