Difference between revisions of "Glossary"

From Block library
Jump to: navigation, search
(# lifts)
Line 1: Line 1:
 
This page will contain an alphabetical glossary of terms used.
 
This page will contain an alphabetical glossary of terms used.
 +
 +
=== # lifts / <math>\mathcal{O}</math> ===
 +
 +
The number of <math>\mathcal{O}</math>-Morita equivalence classes of blocks reducing to a representative of the given <math>k</math>-class.
  
 
=== Picard group ===
 
=== Picard group ===
  
 
Let <math>R</math> be a commutative ring and <math>A</math> an <math>R</math>-algebra. The Picard group <math>{\rm Pic}_R(A)</math> has elements isomorphism classes of <math>A</math>-<math>A</math>-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over <math>A</math>.
 
Let <math>R</math> be a commutative ring and <math>A</math> an <math>R</math>-algebra. The Picard group <math>{\rm Pic}_R(A)</math> has elements isomorphism classes of <math>A</math>-<math>A</math>-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over <math>A</math>.

Revision as of 08:21, 15 September 2018

This page will contain an alphabetical glossary of terms used.

# lifts / [math]\mathcal{O}[/math]

The number of [math]\mathcal{O}[/math]-Morita equivalence classes of blocks reducing to a representative of the given [math]k[/math]-class.

Picard group

Let [math]R[/math] be a commutative ring and [math]A[/math] an [math]R[/math]-algebra. The Picard group [math]{\rm Pic}_R(A)[/math] has elements isomorphism classes of [math]A[/math]-[math]A[/math]-bimodules inducing a Morita equivalence, with multiplication given by taking tensor products over [math]A[/math].