Difference between revisions of "C4xC2"
Line 21: | Line 21: | ||
|- | |- | ||
− | |M(8,2,1) || <math>k(C_4 \times C_2)</math> ||8 ||1 ||<math>1</math> || <math>(C_4 \times C_2):(C_2 \times C_2 \times C_2)</math> || ||1 ||1 || | + | |[[M(8,2,1)]] || <math>k(C_4 \times C_2)</math> ||8 ||1 ||<math>1</math> || <math>(C_4 \times C_2):(C_2 \times C_2 \times C_2)</math> || ||1 ||1 || |
|} | |} |
Revision as of 15:08, 8 September 2018
Blocks with defect group [math]C_4 \times C_2[/math]
[math]{\rm Aut}(C_4 \times C_2)[/math] is an abelian [math]2[/math]-group and so every block with this defect group is nilpotent.
There is a unique [math]\mathcal{O}[/math]-Morita equivalence class.
Class | Representative | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|
M(8,2,1) | [math]k(C_4 \times C_2)[/math] | 8 | 1 | [math]1[/math] | [math](C_4 \times C_2):(C_2 \times C_2 \times C_2)[/math] | 1 | 1 |