Difference between revisions of "M(4,2,2)"
(Rearranged labelling for simples) |
|||
Line 10: | Line 10: | ||
|Pic-k= <math>k^* \wr C_2</math> | |Pic-k= <math>k^* \wr C_2</math> | ||
|cartan = <math>\left( \begin{array}{ccc} | |cartan = <math>\left( \begin{array}{ccc} | ||
− | |||
2 & 2 & 1 \\ | 2 & 2 & 1 \\ | ||
− | 2 & 1 & 2 \\ | + | 2 & 4 & 2 \\ |
+ | 1 & 2 & 2 \\ | ||
\end{array} \right)</math> | \end{array} \right)</math> | ||
|defect-morita-inv? = Yes | |defect-morita-inv? = Yes | ||
Line 19: | Line 19: | ||
|O-morita = <math>B_0(\mathcal{O}A_5)</math> | |O-morita = <math>B_0(\mathcal{O}A_5)</math> | ||
|decomp = <math>\left( \begin{array}{ccc} | |decomp = <math>\left( \begin{array}{ccc} | ||
− | 1 | + | 0 & 1 & 0 \\ |
1 & 1 & 0 \\ | 1 & 1 & 0 \\ | ||
− | 1 | + | 0 & 1 & 1 \\ |
1 & 1 & 1 \\ | 1 & 1 & 1 \\ | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
Line 54: | Line 54: | ||
<math>\begin{array}{ccc} | <math>\begin{array}{ccc} | ||
− | + | \begin{array}{c} | |
− | + | S_1 \\ | |
− | |||
− | S_1 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
S_2 \\ | S_2 \\ | ||
− | |||
S_3 \\ | S_3 \\ | ||
+ | S_2 \\ | ||
S_1 \\ | S_1 \\ | ||
− | S_2 \\ | + | \end{array}, |
+ | & | ||
+ | \begin{array}{ccc} | ||
+ | & S_2 & \\ | ||
+ | S_1 & & S_3 \\ | ||
+ | S_2 & & S_2 \\ | ||
+ | S_3 & & S_1 \\ | ||
+ | & S_2 & \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
\begin{array}{c} | \begin{array}{c} | ||
S_3 \\ | S_3 \\ | ||
+ | S_2 \\ | ||
S_1 \\ | S_1 \\ | ||
S_2 \\ | S_2 \\ | ||
− | |||
S_3 \\ | S_3 \\ | ||
\end{array} | \end{array} |
Revision as of 08:06, 21 September 2018
Representative: | [math]B_0(kA_5)[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2[/math] |
Inertial quotients: | [math]C_3[/math] |
[math]k(B)=[/math] | 4 |
[math]l(B)=[/math] | 3 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | [math]k^* \wr C_2[/math] |
Cartan matrix: | [math]\left( \begin{array}{ccc} 2 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 2 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}A_5)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{T}(B)=C_2[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | [math]B_0(\mathcal{O}A_5)[/math] |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(4,2,3) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | {{{coveringblocks}}} |
[math]p'[/math]-index covered blocks: | {{{coveredblocks}}} |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,2>, d:<2,1>
Relations w.r.t. [math]k[/math]: ad=cb=bcda+dabc=0
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
[math]B[/math] lies in M(4,2,2) iff [math]b[/math] does.
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccc} \begin{array}{c} S_1 \\ S_2 \\ S_3 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{ccc} & S_2 & \\ S_1 & & S_3 \\ S_2 & & S_2 \\ S_3 & & S_1 \\ & S_2 & \\ \end{array}, & \begin{array}{c} S_3 \\ S_2 \\ S_1 \\ S_2 \\ S_3 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.