Difference between revisions of "M(4,2,2)"

From Block library
Jump to: navigation, search
(Rearranged labelling for simples)
Line 10: Line 10:
 
|Pic-k= <math>k^* \wr C_2</math>
 
|Pic-k= <math>k^* \wr C_2</math>
 
|cartan = <math>\left( \begin{array}{ccc}
 
|cartan = <math>\left( \begin{array}{ccc}
4 & 2 & 2 \\
 
 
2 & 2 & 1 \\
 
2 & 2 & 1 \\
2 & 1 & 2 \\
+
2 & 4 & 2 \\
 +
1 & 2 & 2 \\
 
\end{array} \right)</math>
 
\end{array} \right)</math>
 
|defect-morita-inv? = Yes
 
|defect-morita-inv? = Yes
Line 19: Line 19:
 
|O-morita = <math>B_0(\mathcal{O}A_5)</math>
 
|O-morita = <math>B_0(\mathcal{O}A_5)</math>
 
|decomp = <math>\left( \begin{array}{ccc}
 
|decomp = <math>\left( \begin{array}{ccc}
1 & 0 & 0 \\
+
0 & 1 & 0 \\
 
1 & 1 & 0 \\
 
1 & 1 & 0 \\
1 & 0 & 1 \\
+
0 & 1 & 1 \\
 
1 & 1 & 1 \\
 
1 & 1 & 1 \\
 
\end{array}\right)</math>
 
\end{array}\right)</math>
Line 54: Line 54:
  
 
<math>\begin{array}{ccc}
 
<math>\begin{array}{ccc}
  \begin{array}{ccc}
+
  \begin{array}{c}
    & S_1 & \\
+
       S_1 \\
      S_2 & & S_3 \\
 
       S_1 & & S_1 \\
 
      S_3 & & S_2 \\
 
    & S_1 & \\
 
  \end{array},
 
&
 
  \begin{array}{c}
 
 
       S_2 \\
 
       S_2 \\
      S_1 \\
 
 
       S_3 \\
 
       S_3 \\
 +
      S_2 \\
 
       S_1 \\
 
       S_1 \\
       S_2 \\
+
  \end{array},
 +
&
 +
  \begin{array}{ccc}
 +
    & S_2 & \\
 +
      S_1 & & S_3 \\
 +
      S_2 & & S_2 \\
 +
       S_3 & & S_1 \\
 +
    & S_2 & \\
 
   \end{array},
 
   \end{array},
 
&  
 
&  
 
   \begin{array}{c}
 
   \begin{array}{c}
 
       S_3 \\
 
       S_3 \\
 +
      S_2 \\
 
       S_1 \\
 
       S_1 \\
 
       S_2 \\
 
       S_2 \\
      S_1 \\
 
 
       S_3 \\
 
       S_3 \\
 
   \end{array}
 
   \end{array}

Revision as of 08:06, 21 September 2018

M(4,2,2) - [math]B_0(kA_5)[/math]
M(4,2,2)quiver.png
Representative: [math]B_0(kA_5)[/math]
Defect groups: [math]C_2 \times C_2[/math]
Inertial quotients: [math]C_3[/math]
[math]k(B)=[/math] 4
[math]l(B)=[/math] 3
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math] [math]k^* \wr C_2[/math]
Cartan matrix: [math]\left( \begin{array}{ccc} 2 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 2 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}A_5)[/math]
Decomposition matrices: [math]\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{T}(B)=C_2[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? Yes
Source algebra reps: [math]B_0(\mathcal{O}A_5)[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(4,2,3)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: {{{coveringblocks}}}
[math]p'[/math]-index covered blocks: {{{coveredblocks}}}
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}


Basic algebra

Quiver: a:<1,2>, b:<2,3>, c:<3,2>, d:<2,1>

Relations w.r.t. [math]k[/math]: ad=cb=bcda+dabc=0

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

[math]B[/math] lies in M(4,2,2) iff [math]b[/math] does.

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccc} \begin{array}{c} S_1 \\ S_2 \\ S_3 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{ccc} & S_2 & \\ S_1 & & S_3 \\ S_2 & & S_2 \\ S_3 & & S_1 \\ & S_2 & \\ \end{array}, & \begin{array}{c} S_3 \\ S_2 \\ S_1 \\ S_2 \\ S_3 \\ \end{array} \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_2 \times C_2[/math]