Difference between revisions of "Classification by p-group"
m |
(Merged some tables) |
||
| Line 31: | Line 31: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
| − | | <strong> | + | | <strong><math>2 \leq |D| \leq 8</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
| Line 43: | Line 43: | ||
|- | |- | ||
| 2 || [[C2|1]] || [[C2|<math>C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | | 2 || [[C2|1]] || [[C2|<math>C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | | 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
|- | |- | ||
| 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Er82], [Li94] ]] || | | 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Er82], [Li94] ]] || | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
|8 || [[C8|1]] || [[C8|<math>C_8</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |8 || [[C8|1]] || [[C8|<math>C_8</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
| Line 86: | Line 60: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
| − | | <strong> | + | | <strong><math>|D|=16</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
| Line 129: | Line 103: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
| − | | <strong> | + | | <strong><math>3 \leq |D| \leq 9</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
| Line 141: | Line 115: | ||
|- | |- | ||
| 3 || [[C3|1]] || [[C3|<math>C_3</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | | 3 || [[C3|1]] || [[C3|<math>C_3</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
|9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
| Line 163: | Line 125: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
| − | | <strong> | + | | <strong><math>5 \leq |D| \leq 25</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
| Line 175: | Line 137: | ||
|- | |- | ||
|5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
|25 || [[C25|1]] ||[[C25|<math>C_{25}</math>]] || 6(6) || No || <math>\mathcal{O}</math> || || Max 12 classes | |25 || [[C25|1]] ||[[C25|<math>C_{25}</math>]] || 6(6) || No || <math>\mathcal{O}</math> || || Max 12 classes | ||
Revision as of 16:11, 31 August 2018
Classification of Morita equivalences for blocks with a given defect group
On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
Contents
Blocks of defect zero
| Defect group of size [math]1[/math] | |||||||
| [math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
|---|---|---|---|---|---|---|---|
| 1 | 1 | [math]1[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] |
Blocks for [math] p=2 [/math]
| [math]2 \leq |D| \leq 8[/math] | |||||||
| [math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
|---|---|---|---|---|---|---|---|
| 2 | 1 | [math]C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 4 | 1 | [math]C_4[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 4 | 2 | [math]C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Er82], [Li94] | |
| 8 | 1 | [math]C_8[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 8 | 2 | [math]C_4 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 8 | 3 | [math]D_8[/math] | 6(?) | [math]k[/math] | [Er87] | ||
| 8 | 4 | [math]Q_8[/math] | [math]k[/math] | ||||
| 8 | 5 | [math]C_2 \times C_2 \times C_2[/math] | 8(8) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Ea16] | Uses CFSG |
| [math]|D|=16[/math] | |||||||
| [math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
|---|---|---|---|---|---|---|---|
| 16 | 1 | [math]C_{16}[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 16 | 2 | [math]C_4 \times C_4[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [EKKS14] | |
| 16 | 3 | SmallGroup(16,3) | [Sa11] | Block invariants known | |||
| 16 | 4 | [math]C_4:C_4[/math] | [Sa12] | Block invariants known | |||
| 16 | 5 | [math]C_8 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 16 | 6 | [math]M_{16}[/math] | [Sa12b] | Block invariants known | |||
| 16 | 7 | [math]D_{16}[/math] | |||||
| 16 | 8 | [math]SD_{16}[/math] | |||||
| 16 | 9 | [math]Q_{16}[/math] | |||||
| 16 | 10 | [math]C_4 \times C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [EL18a] | |
| 16 | 11 | [math]D_8 \times C_2[/math] | [Sa12] | Block invariants known | |||
| 16 | 12 | [math]Q_8 \times C_2[/math] | [Sa13] | Block invariants known | |||
| 16 | 13 | [math]D_8*C_4[/math] | [Sa13b] | Block invariants known | |||
| 16 | 14 | [math](C_2)^4[/math] | 16(16) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Ea18] |
Blocks for [math]p=3[/math]
| [math]3 \leq |D| \leq 9[/math] | |||||||
| [math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
|---|---|---|---|---|---|---|---|
| 3 | 1 | [math]C_3[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 9 | 1 | [math]C_9[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 9 | 2 | [math]C_3 \times C_3[/math] |
Blocks for [math]p=5[/math]
| [math]5 \leq |D| \leq 25[/math] | |||||||
| [math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
|---|---|---|---|---|---|---|---|
| 5 | 1 | [math]C_5[/math] | 6(6) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 25 | 1 | [math]C_{25}[/math] | 6(6) | No | [math]\mathcal{O}[/math] | Max 12 classes | |
| 25 | 2 | [math]C_5 \times C_5[/math] |
Blocks for [math]p\geq 7[/math]
| [math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
|---|---|---|---|---|---|---|---|
| 7 | 1 | [math]C_7[/math] | 14(14) | No | [math]\mathcal{O}[/math] | Max 19 classes | |
| 11 | 1 | [math]C_{11}[/math] | No | [math]\mathcal{O}[/math] | |||
| 13 | 1 | [math]C_{13}[/math] | No | [math]\mathcal{O}[/math] | |||
| 17 | 1 | [math]C_{17}[/math] | No | [math]\mathcal{O}[/math] | |||
| 19 | 1 | [math]C_{19}[/math] | No | [math]\mathcal{O}[/math] | |||
| 23 | 1 | [math]C_{23}[/math] | No | [math]\mathcal{O}[/math] |