Difference between revisions of "M(16,3,3)"
 (Was M(16,3,2).)  | 
				 (Loewy layers)  | 
				||
| (One intermediate revision by the same user not shown) | |||
| Line 28: | Line 28: | ||
1 & 1 \\  | 1 & 1 \\  | ||
1 & 1 \\  | 1 & 1 \\  | ||
| − | \end{array}\right)</math><ref>This is the only possible decomposition matrix with the given Cartan matrix.</ref>  | + | \end{array}\right)</math><ref>This is the only possible decomposition matrix with the given Cartan matrix and <math>k(B)=10</math>.</ref>  | 
|O-morita-frob =    | |O-morita-frob =    | ||
|Pic-O =  | |Pic-O =  | ||
| Line 51: | Line 51: | ||
== Projective indecomposable modules ==  | == Projective indecomposable modules ==  | ||
| + | |||
| + | Labelling the simple <math>B</math>-modules by <math>1, 2</math>, the projective indecomposable modules have Loewy structure as follows:  | ||
| + | |||
| + | <math>\begin{array}{cc}  | ||
| + |   \begin{array}{c} 1 \\ 1 \ 2 \\ 1 \ 1 \ 2 \\ 1 \ 1 \ 2 \\ 1 \ 2 \\ 1 \\ \end{array},  | ||
| + | &  | ||
| + |   \begin{array}{c} 2 \\ 1 \ 2 \ 2 \\ 1 \ 2 \\ 1 \ 2 \\ 1 \\ 2 \\ \end{array} \\  | ||
| + | \end{array}  | ||
| + | </math>  | ||
== Irreducible characters ==  | == Irreducible characters ==  | ||
Latest revision as of 09:56, 15 August 2019
M(16,3,3) - [math]k(A_4:C_4)[/math][1]
[[File:|250px]]
| Representative: | [math]k(A_4:C_4)[/math] | 
|---|---|
| Defect groups: | MNA(2,1) | 
| Inertial quotients: | [math]1[/math] | 
| [math]k(B)=[/math] | 10 | 
| [math]l(B)=[/math] | 2 | 
| [math]{\rm mf}_k(B)=[/math] | 1 | 
| [math]{\rm Pic}_k(B)=[/math] | |
| Cartan matrix: | [math]\left( \begin{array}{cc} 8 & 4 \\ 4 & 6 \\ \end{array} \right)[/math] | 
| Defect group Morita invariant? | |
| Inertial quotient Morita invariant? | |
| [math]\mathcal{O}[/math]-Morita classes known? | |
| [math]\mathcal{O}[/math]-Morita classes: | |
| Decomposition matrices: | [math]\left( \begin{array}{cc} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \end{array}\right)[/math][2] | 
| [math]{\rm mf}_\mathcal{O}(B)=[/math] | |
| [math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
| [math]PI(B)=[/math] | |
| Source algebras known? | |
| Source algebra reps: | |
| [math]k[/math]-derived equiv. classes known? | |
| [math]k[/math]-derived equivalent to: | |
| [math]\mathcal{O}[/math]-derived equiv. classes known? | |
| [math]p'[/math]-index covering blocks: | |
| [math]p'[/math]-index covered blocks: | |
| Index [math]p[/math] covering blocks: | 
Contents
Basic algebra
Quiver: a: <1,2>, b:=<1,1>, c:=<2,1>, d:=<2,2>, e:=<2,2>
Relations w.r.t. [math]k[/math]:
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]1, 2[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cc} \begin{array}{c} 1 \\ 1 \ 2 \\ 1 \ 1 \ 2 \\ 1 \ 1 \ 2 \\ 1 \ 2 \\ 1 \\ \end{array}, & \begin{array}{c} 2 \\ 1 \ 2 \ 2 \\ 1 \ 2 \\ 1 \ 2 \\ 1 \\ 2 \\ \end{array} \\ \end{array} [/math]
Irreducible characters
[math]k_0(B)=8[/math], [math]k_1(B)=2[/math]