Difference between revisions of "MNA(2,1)"

From Block library
Jump to: navigation, search
(Created page with "__NOTITLE__ == Blocks with defect group <math>MNA(2,1)=\langle x,y|x^4=y^2=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> == The defect groups are minimal nonabelian <math>2</...")
 
m
 
(8 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
== Blocks with defect group <math>MNA(2,1)=\langle x,y|x^4=y^2=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> ==
 
== Blocks with defect group <math>MNA(2,1)=\langle x,y|x^4=y^2=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> ==
  
The defect groups are minimal nonabelian <math>2</math>-groups. The invariants <math>k(B)</math>, <math>l(B)</math> and <math>k_i(B)</math> for all <math>i</math> are determined in [[References|[Sa11]]]. The Cartan matrices are also determined up to equivalence of quadratic forms. These results do not rely on the [[Glossary#CFSG|CFSG]]. The automorphism group of <math>MNA(2,1)</math> is a <math>2</math>-group, but there exists at least one non-nilpotent fusion system for blocks with this defect group.
+
The defect groups are minimal nonabelian <math>2</math>-groups. The invariants <math>k(B)</math>, <math>l(B)</math> and <math>k_i(B)</math> for all <math>i</math> are determined in [[References#S|[Sa11]]]. The Cartan matrices are also determined up to equivalence of quadratic forms. These results do not rely on the [[Glossary#CFSG|CFSG]]. The automorphism group of <math>MNA(2,1)</math> is a <math>2</math>-group, but by [[References#S|[Sa14,12.7]]] there exists precisely one non-nilpotent fusion system for blocks with this defect group, realised in SmallGroup(48,30) <math>\cong A_4:C_4</math>. By [[References#S|[Sa16]]] all non-nilpotent blocks with this defect group are [[Glossary#Isotypy|isotypic]].  
 +
'''<pre style="color: red">CLASSIFICATION NOT COMPLETE</pre>'''
  
<!-- {| class="wikitable"
+
{| class="wikitable"
 
|-
 
|-
 
! scope="col"| Class
 
! scope="col"| Class
Line 20: Line 21:
  
 
|-
 
|-
|[[M(16,2,1)]] || <math>k(C_4 \times C_4)</math> || 1 ||16 ||1 ||<math>1</math> ||<math>(C_4 \times C_4):({\rm Aut}(C_4 \times C_4))</math> || ||1 ||1 ||
+
|[[M(16,3,1)]] || <math>k(MNA(2,1))</math> || 1 ||10 ||1 ||<math>1</math> || || ||1 ||1 ||
 
|-
 
|-
|[[M(16,2,2)]] || <math>k((C_4 \times C_4):C_3)</math> || 1 ||8 ||3 ||<math>C_3</math> ||<math>C_2 \times S_3</math> || ||1 ||1 ||  
+
|[[M(16,3,2)]] || <math>B_0(k(A_5:C_4))</math> || ? ||10 ||2 ||<math>1</math> || || ||1 ||1 ||
|}-->
+
|-
 +
|[[M(16,3,3)]] || <math>k(A_4:C_4)</math> || ? ||10 ||2 ||<math>1</math> || || ||1 ||1 ||  
 +
|}
 +
 
 +
If <math>B</math> is not nilpotent, then <math>k(B)=10, k_1(B)=2, l(B)=2</math>.

Latest revision as of 11:47, 9 November 2022

Blocks with defect group [math]MNA(2,1)=\langle x,y|x^4=y^2=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math]

The defect groups are minimal nonabelian [math]2[/math]-groups. The invariants [math]k(B)[/math], [math]l(B)[/math] and [math]k_i(B)[/math] for all [math]i[/math] are determined in [Sa11]. The Cartan matrices are also determined up to equivalence of quadratic forms. These results do not rely on the CFSG. The automorphism group of [math]MNA(2,1)[/math] is a [math]2[/math]-group, but by [Sa14,12.7] there exists precisely one non-nilpotent fusion system for blocks with this defect group, realised in SmallGroup(48,30) [math]\cong A_4:C_4[/math]. By [Sa16] all non-nilpotent blocks with this defect group are isotypic.

CLASSIFICATION NOT COMPLETE
Class Representative # lifts / [math]\mathcal{O}[/math] [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(16,3,1) [math]k(MNA(2,1))[/math] 1 10 1 [math]1[/math] 1 1
M(16,3,2) [math]B_0(k(A_5:C_4))[/math]  ? 10 2 [math]1[/math] 1 1
M(16,3,3) [math]k(A_4:C_4)[/math]  ? 10 2 [math]1[/math] 1 1

If [math]B[/math] is not nilpotent, then [math]k(B)=10, k_1(B)=2, l(B)=2[/math].