Difference between revisions of "M(16,2,1)"
(Corrected Picard group) |
|||
Line 23: | Line 23: | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
− | |Pic-O = <math>(C_4 \times C_4):( | + | |Pic-O = <math>(C_4 \times C_4):{\rm Aut}(C_4 \times C_4)</math> |
|source? = No | |source? = No | ||
|sourcereps = | |sourcereps = |
Latest revision as of 12:00, 15 November 2018
M(16,2,1) - [math]k(C_4 \times C_4)[/math]
Representative: | [math]k(C_4 \times C_4)[/math] |
---|---|
Defect groups: | [math]C_4 \times C_4[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 16 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 16 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_4 \times C_4)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math](C_4 \times C_4):{\rm Aut}(C_4 \times C_4)[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(16,2,2) |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are nilpotent blocks.
Contents
Basic algebra
Quiver: a:<1,1>, b:<1,1>
Relations w.r.t. [math]k[/math]: a^4=b^4=ab+ba=0
Other notatable representatives
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{c} 1 \\ 1 \ 1 \\ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \\ 1 \ 1 \\ 1 \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.