Difference between revisions of "M(16,2,2)"
(Created page with "50px|left {{blockbox |title = M(16,2,2) - <math>k((C_4 \times C_4):C_3)</math> |image = M(4,2,3)quiver.png |representative = <math>k((C_4 \...") |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | |||
{{blockbox | {{blockbox | ||
|title = M(16,2,2) - <math>k((C_4 \times C_4):C_3)</math> | |title = M(16,2,2) - <math>k((C_4 \times C_4):C_3)</math> | ||
|image = M(4,2,3)quiver.png | |image = M(4,2,3)quiver.png | ||
|representative = <math>k((C_4 \times C_4):C_3)</math> | |representative = <math>k((C_4 \times C_4):C_3)</math> | ||
− | |defect = [[ | + | |defect = [[C4xC4|<math>C_4 \times C_4</math>]] |
|inertialquotients = <math>C_3</math> | |inertialquotients = <math>C_3</math> | ||
|k(B) = 8 | |k(B) = 8 | ||
Line 12: | Line 10: | ||
|Pic-k= <math></math> | |Pic-k= <math></math> | ||
|cartan = <math>\left( \begin{array}{ccc} | |cartan = <math>\left( \begin{array}{ccc} | ||
− | + | 6 & 5 & 5 \\ | |
− | + | 5 & 6 & 5 \\ | |
− | + | 5 & 5 & 6 \\ | |
\end{array} \right)</math> | \end{array} \right)</math> | ||
|defect-morita-inv? = Yes | |defect-morita-inv? = Yes | ||
|inertial-morita-inv? = Yes | |inertial-morita-inv? = Yes | ||
|O-morita? = Yes | |O-morita? = Yes | ||
− | |O-morita = <math>\mathcal{O} | + | |O-morita = <math>\mathcal{O}((C_4 \times C_4):C_3)</math> |
|decomp = <math>\left( \begin{array}{ccc} | |decomp = <math>\left( \begin{array}{ccc} | ||
1 & 0 & 0 \\ | 1 & 0 & 0 \\ | ||
0 & 1 & 0 \\ | 0 & 1 & 0 \\ | ||
0 & 0 & 1 \\ | 0 & 0 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
1 & 1 & 1 \\ | 1 & 1 & 1 \\ | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
− | |Pic-O = <math>\ | + | |Pic-O = <math>C_2 \times S_3</math><ref>Proposition 4.3 of [[References|[BKL18]]]</ref> |
− | | | + | |PIgroup = <math>S_3 \times D_8 \times C_2</math><ref>Using GAP, with code from [[References#R|[Ru11]]]</ref> |
− | | | + | |source? = No |
+ | |sourcereps = | ||
|k-derived-known? = Yes | |k-derived-known? = Yes | ||
− | |k-derived = | + | |k-derived = Forms its own derived equivalence class |
|O-derived-known? = Yes | |O-derived-known? = Yes | ||
+ | |coveringblocks = | ||
+ | |coveredblocks = [[M(16,2,1)]] | ||
+ | |pcoveringblocks = | ||
}} | }} | ||
Line 39: | Line 45: | ||
'''Quiver:''' a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3> | '''Quiver:''' a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3> | ||
− | '''Relations w.r.t. <math>k</math>:''' | + | '''Relations w.r.t. <math>k</math>:''' abca=bcab=cabc=0, dfed=fedf=edfe=0, ad=fc, be=da, cf=eb |
== Other notatable representatives == | == Other notatable representatives == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
− | Labelling the simple <math>B</math>-modules by <math> | + | Labelling the simple <math>B</math>-modules by <math>1,2,3</math>, the projective indecomposable modules have Loewy structure as follows: |
<math>\begin{array}{ccc} | <math>\begin{array}{ccc} | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 1 \\ | |
− | + | 2 \ 3 \\ | |
− | + | 3 \ 1 \ 2 \\ | |
+ | 1 \ 2 \ 3 \ 1 \\ | ||
+ | 3 \ 1 \ 2 \\ | ||
+ | 2 \ 3 \\ | ||
+ | 1 \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 2 \\ | |
− | + | 1 \ 3 \\ | |
− | + | 3 \ 2 \ 1 \\ | |
+ | 2 \ 1 \ 3 \ 2 \\ | ||
+ | 3 \ 2 \ 1 \\ | ||
+ | 1 \ 3 \\ | ||
+ | 2 \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 3 \\ | |
− | + | 1 \ 2 \\ | |
− | + | 2 \ 3 \ 1 \\ | |
− | \end{array} | + | 3 \ 1 \ 2 \ 3 \\ |
+ | 2 \ 3 \ 1 \\ | ||
+ | 1 \ 2 \\ | ||
+ | 2 \\ | ||
+ | \end{array} | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
Line 83: | Line 90: | ||
All irreducible characters have height zero. | All irreducible characters have height zero. | ||
+ | [[C4xC4|Back to <math>C_4 \times C_4</math>]] | ||
+ | |||
+ | == Notes == | ||
+ | <references /> | ||
− | |||
− | [[Category: Morita equivalence classes| | + | [[Category: Morita equivalence classes|16,2,2]] |
− | [[Category: Blocks with defect group | + | [[Category: Blocks with defect group C4xC4]] |
[[Category: Tame blocks|4,2,3]] | [[Category: Tame blocks|4,2,3]] |
Latest revision as of 09:57, 28 July 2019
Representative: | [math]k((C_4 \times C_4):C_3)[/math] |
---|---|
Defect groups: | [math]C_4 \times C_4[/math] |
Inertial quotients: | [math]C_3[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 3 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | [math][/math] |
Cartan matrix: | [math]\left( \begin{array}{ccc} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O}((C_4 \times C_4):C_3)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]C_2 \times S_3[/math][1] |
[math]PI(B)=[/math] | [math]S_3 \times D_8 \times C_2[/math][2] |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms its own derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | M(16,2,1) |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3>
Relations w.r.t. [math]k[/math]: abca=bcab=cabc=0, dfed=fedf=edfe=0, ad=fc, be=da, cf=eb
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]1,2,3[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccc} \begin{array}{c} 1 \\ 2 \ 3 \\ 3 \ 1 \ 2 \\ 1 \ 2 \ 3 \ 1 \\ 3 \ 1 \ 2 \\ 2 \ 3 \\ 1 \\ \end{array}, & \begin{array}{c} 2 \\ 1 \ 3 \\ 3 \ 2 \ 1 \\ 2 \ 1 \ 3 \ 2 \\ 3 \ 2 \ 1 \\ 1 \ 3 \\ 2 \\ \end{array}, & \begin{array}{c} 3 \\ 1 \ 2 \\ 2 \ 3 \ 1 \\ 3 \ 1 \ 2 \ 3 \\ 2 \ 3 \ 1 \\ 1 \ 2 \\ 2 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Back to [math]C_4 \times C_4[/math]