Difference between revisions of "M(8,5,7)"
(Created page with "{{blockbox |title = M(8,5,7) - <math>B_0(kJ_1)</math> |image = M(8,5,7)quiver.png |representative = <math>B_0(kJ_1)</math> |defect = C2xC2xC2|<math>C_2 \times C_2 \times C...") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 32: | Line 32: | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
− | |Pic-O = | + | |Pic-O = <math>1</math><ref>Shown by Eisele, using [[References|[Ne02]]].</ref> |
+ | |PIgroup = <math>(C_2 \wr S_4) \times C_2</math><ref>See 8.7 of [[References|[Ru11]]], which uses GAP.</ref> | ||
|source? = No | |source? = No | ||
|sourcereps = | |sourcereps = | ||
Line 38: | Line 39: | ||
|k-derived = [[M(8,5,6)]], [[M(8,5,8)]] | |k-derived = [[M(8,5,6)]], [[M(8,5,8)]] | ||
|O-derived-known? = Yes | |O-derived-known? = Yes | ||
− | |coveringblocks = | + | |coveringblocks = M(8,5,7) (complete) |
− | |coveredblocks = | + | |coveredblocks = M(8,5,7) (complete) |
+ | |pcoveringblocks = [[M(16,14,14)]] (complete) | ||
}} | }} | ||
+ | == Basic algebra == | ||
+ | '''Quiver:''' a:<1,4>, b:<4,2>, c:<2,3>, d:<3,1>, e:<1,5>, f:<5,5>, g:<5,1>, h:<1,3>, i:<3,2>, j:<2,4>, k:<4,1> | ||
− | + | '''Relations w.r.t. <math>k</math>:''' | |
− | |||
− | |||
− | |||
− | |||
− | + | The basic algebra for the block defined over <math>\mathcal{O}</math> is described in [[References|[Ne02]]]. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Other notatable representatives == | == Other notatable representatives == | ||
Line 86: | Line 56: | ||
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
− | Labelling the simple <math>B</math>-modules by <math> | + | Labelling the simple <math>B</math>-modules by <math>1,2,3,4,5</math>, the projective indecomposable modules have Loewy structure as follows: |
− | <math>\begin{array}{ | + | <math>\begin{array}{ccccc} |
\begin{array}{c} | \begin{array}{c} | ||
− | + | 1 \\ | |
− | + | 3 \ 4 \ 5 \\ | |
− | + | 1 \ 2 \ 1 \ 2 \ 1 \\ | |
− | + | 3 \ 3 \ 4 \ 4 \ 5 \ 5 \\ | |
+ | 1 \ 2 \ 1 \ 2 \ 1 \\ | ||
+ | 3 \ 4 \ 5 \\ | ||
+ | 1 \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 2 \\ | |
− | + | 3 \ 4 \\ | |
− | + | 1 \ 2 \ 1 \\ | |
− | + | 3 \ 4 \ 5 \\ | |
+ | 1 \ 2 \ 1 \\ | ||
+ | 3 \ 4 \\ | ||
+ | 2 \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 3 \\ | |
− | + | 1 \ 2 \\ | |
− | + | 3 \ 4 \ 5 \\ | |
− | + | 1 \ 2 \ 1 \\ | |
+ | 3 \ 4 \ 5 \\ | ||
+ | 1 \ 2 \\ | ||
+ | 3 \\ | ||
\end{array} | \end{array} | ||
, | , | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 4 \\ | |
− | + | 1 \ 2 \\ | |
− | + | 3 \ 4 \ 5 \\ | |
− | + | 1 \ 2 \ 1 \\ | |
− | + | 3 \ 4 \ 5 \\ | |
− | + | 1 \ 2 \\ | |
− | + | 4 \\ | |
− | |||
− | |||
− | |||
− | |||
\end{array}, | \end{array}, | ||
& | & | ||
\begin{array}{ccc} | \begin{array}{ccc} | ||
− | + | 5 \\ | |
− | + | 1 \ 5 \\ | |
− | + | 3 \ 4 \\ | |
− | + | 1 \ 2 \ 1 \\ | |
− | + | 3 \ 4 \ 5 \\ | |
− | + | 1 \\ | |
− | + | 5 \\ | |
− | + | \end{array} | |
− | |||
− | |||
− | |||
− | \end{array} | ||
\end{array} | \end{array} | ||
− | </math | + | </math> |
== Irreducible characters == | == Irreducible characters == | ||
Line 146: | Line 117: | ||
[[C2xC2xC2|Back to <math>C_2 \times C_2 \times C_2</math>]] | [[C2xC2xC2|Back to <math>C_2 \times C_2 \times C_2</math>]] | ||
+ | |||
+ | == Notes == | ||
+ | |||
+ | <references /> |
Latest revision as of 09:10, 5 June 2019
Representative: | [math]B_0(kJ_1)[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2 \times C_2[/math] |
Inertial quotients: | [math]C_7:C_3[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 5 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccccc} 8 & 4 & 4 & 4 & 4 \\ 4 & 4 & 3 & 3 & 1 \\ 4 & 3 & 4 & 2 & 2 \\ 4 & 3 & 2 & 4 & 2 \\ 4 & 1 & 2 & 2 & 4 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}J_1)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]1[/math][1] |
[math]PI(B)=[/math] | [math](C_2 \wr S_4) \times C_2[/math][2] |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,5,6), M(8,5,8) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(8,5,7) (complete) |
[math]p'[/math]-index covered blocks: | M(8,5,7) (complete) |
Index [math]p[/math] covering blocks: | M(16,14,14) (complete) |
Contents
Basic algebra
Quiver: a:<1,4>, b:<4,2>, c:<2,3>, d:<3,1>, e:<1,5>, f:<5,5>, g:<5,1>, h:<1,3>, i:<3,2>, j:<2,4>, k:<4,1>
Relations w.r.t. [math]k[/math]:
The basic algebra for the block defined over [math]\mathcal{O}[/math] is described in [Ne02].
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]1,2,3,4,5[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccccc} \begin{array}{c} 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \ 2 \ 1 \\ 3 \ 3 \ 4 \ 4 \ 5 \ 5 \\ 1 \ 2 \ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \\ \end{array}, & \begin{array}{c} 2 \\ 3 \ 4 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \\ 3 \ 4 \\ 2 \\ \end{array}, & \begin{array}{c} 3 \\ 1 \ 2 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \\ 3 \\ \end{array} , & \begin{array}{c} 4 \\ 1 \ 2 \\ 3 \ 4 \ 5 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \ 2 \\ 4 \\ \end{array}, & \begin{array}{ccc} 5 \\ 1 \ 5 \\ 3 \ 4 \\ 1 \ 2 \ 1 \\ 3 \ 4 \ 5 \\ 1 \\ 5 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Back to [math]C_2 \times C_2 \times C_2[/math]