Difference between revisions of "M(8,3,2)"
(3 intermediate revisions by the same user not shown) | |||
Line 15: | Line 15: | ||
|defect-morita-inv? = Yes | |defect-morita-inv? = Yes | ||
|inertial-morita-inv? = Yes | |inertial-morita-inv? = Yes | ||
− | |O-morita? = | + | |O-morita? = No |
|O-morita = | |O-morita = | ||
|decomp = <math>\left( \begin{array}{c} | |decomp = <math>\left( \begin{array}{c} | ||
Line 29: | Line 29: | ||
|sourcereps = | |sourcereps = | ||
|k-derived-known? = Yes | |k-derived-known? = Yes | ||
− | |k-derived = [[M(8,3,3 | + | |k-derived = [[M(8,3,3)]] |
|O-derived-known? = | |O-derived-known? = | ||
|coveringblocks = | |coveringblocks = | ||
Line 35: | Line 35: | ||
}} | }} | ||
− | These are [[Tame blocks|tame blocks]], and appear in the family <math>D(2 {\cal A})</math> in Erdmann's classification (see [[References|[Er87] ]]) | + | These are [[Tame blocks|tame blocks]], and appear in the family <math>D(2 {\cal A})</math> in Erdmann's classification (see [[References|[Er87]]]). Derived equivalences over <math>k</math> are established in [[References|[Ho97]]]. |
== Basic algebra == | == Basic algebra == | ||
Line 47: | Line 47: | ||
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
− | Labelling the simple <math>B</math>-modules by <math> | + | Labelling the simple <math>B</math>-modules by <math>1, 2</math>, the projective indecomposable modules have Loewy structure as follows: |
− | + | <math>\begin{array}{cc} | |
− | + | \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ \end{array}, | |
− | + | & | |
− | + | \begin{array}{ccc} | |
− | + | & 1 & \\ | |
− | + | \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ \end{array} & \oplus & \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ \end{array} \\ | |
− | + | & 2 & \\ | |
+ | \end{array} \\ | ||
+ | \end{array} | ||
</math> | </math> | ||
− | |||
== Irreducible characters == | == Irreducible characters == | ||
<math>k_0(B)=4, k_1(B)=1</math> | <math>k_0(B)=4, k_1(B)=1</math> |
Latest revision as of 14:09, 4 October 2018
Representative: | [math]B_0(kPGL_2(5))[/math] |
---|---|
Defect groups: | [math]D_8[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 5 |
[math]l(B)=[/math] | 2 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{cc} 3 & 4 \\ 4 & 8 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | No |
[math]\mathcal{O}[/math]-Morita classes: | |
Decomposition matrices: | [math]\left( \begin{array}{c} 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,3,3) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are tame blocks, and appear in the family [math]D(2 {\cal A})[/math] in Erdmann's classification (see [Er87]). Derived equivalences over [math]k[/math] are established in [Ho97].
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,1>, c:<2,2>
Relations w.r.t. [math]k[/math]: [math]ab=c^2=0[/math], [math](cba)^2=(bac)^2[/math]
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]1, 2[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cc} \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ \end{array}, & \begin{array}{ccc} & 1 & \\ \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ \end{array} & \oplus & \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ \end{array} \\ & 2 & \\ \end{array} \\ \end{array} [/math]
Irreducible characters
[math]k_0(B)=4, k_1(B)=1[/math]