Difference between revisions of "M(5,1,1)"

From Block library
Jump to: navigation, search
(Image added)
 
Line 25: Line 25:
 
|O-morita-frob = 1
 
|O-morita-frob = 1
 
|Pic-O = <math>\mathcal{L}(B)=C_5:C_4</math>
 
|Pic-O = <math>\mathcal{L}(B)=C_5:C_4</math>
 +
|PIgroup = <math>\mathcal{L}(B)=(C_5:C_4) \times C_2</math><ref>See [[References#R|[Ru11]]].</ref>
 
|source? = Yes
 
|source? = Yes
 
|sourcereps = <math>kC_5</math>
 
|sourcereps = <math>kC_5</math>
Line 30: Line 31:
 
|k-derived = Forms a derived equivalence class
 
|k-derived = Forms a derived equivalence class
 
|O-derived-known? = Yes
 
|O-derived-known? = Yes
 +
|coveringblocks = M(5,1,1), [[M(5,1,2)]] (complete)
 +
|coveredblocks =
 +
|pcoveringblocks =
 
}}
 
}}
  
Line 41: Line 45:
  
 
== Other notatable representatives ==
 
== Other notatable representatives ==
 
== Covering blocks and covered blocks ==
 
 
Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
 
 
If <math>b</math> lies in M(5,1,1), then <math>B</math> must lie in M(5,1,1), [[M(5,1,2)]] or [[M(5,1,4)]]. For example consider the principal blocks of <math>C_5 \triangleleft D_{10}, C_5:C_4</math>.
 
 
If <math>B</math> lies in M(5,1,1), then <math>b</math> must lie in M(5,1,1), [[M(5,1,2)]] or [[M(5,1,4)]]. <span style="color: red">Examples needed.</span>
 
  
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==
Line 66: Line 62:
  
 
All irreducible characters have height zero.
 
All irreducible characters have height zero.
 +
 +
== Notes ==
 +
 +
<references />

Latest revision as of 22:44, 2 January 2019

M(5,1,1) - [math]kC_5[/math]
M(2,1,1)quiver.png
Representative: [math]kC_5[/math]
Defect groups: [math]C_5[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 5
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{c} 5 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} C_5[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math]\mathcal{L}(B)=C_5:C_4[/math]
[math]PI(B)=[/math] [math]\mathcal{L}(B)=(C_5:C_4) \times C_2[/math][1]
Source algebras known? Yes
Source algebra reps: [math]kC_5[/math]
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: Forms a derived equivalence class
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: M(5,1,1), M(5,1,2) (complete)
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

These are nilpotent blocks.

Basic algebra

Quiver: a:<1,1>

Relations w.r.t. [math]k[/math]: a^5=0

Other notatable representatives

Projective indecomposable modules

Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:

[math]\begin{array}{c} S_1 \\ S_1 \\ S_1 \\ S_1 \\ S_1 \\ \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Notes

  1. See [Ru11].