Difference between revisions of "M(8,5,1)"
(Created page with "{{blockbox |title = M(8,5,1) - <math>k(C_2 \times C_2 \times C_2)</math> |image = |representative = <math>k(C_2 \times C_2 \times C_2)</math> |defect = C2xC2xC2|<math>C_2...") |
m (fixed typo in blockbox) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 23: | Line 23: | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
− | |Pic-O = <math> | + | |Pic-O = <math>(C_2 \times C_2 \times C_2):GL_3(2)</math> |
− | |source? = | + | |source? = No |
− | |sourcereps = | + | |sourcereps = |
|k-derived-known? = Yes | |k-derived-known? = Yes | ||
|k-derived = Forms a derived equivalence class | |k-derived = Forms a derived equivalence class | ||
|O-derived-known? = Yes | |O-derived-known? = Yes | ||
+ | |coveringblocks = | ||
+ | |coveredblocks = | ||
+ | |pcoveringblocks = | ||
}} | }} | ||
Line 46: | Line 49: | ||
Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>. | Let <math>N \triangleleft G</math> with <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>. | ||
− | If <math>b</math> is in M(8,5,1), then <math>B</math> is in M | + | If <math>b</math> is in M(8,5,1), then <math>B</math> is in M(8,5,1), [[M(8,5,3)]], [[M(8,5,4)]] or [[M(8,5,6)]]. |
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
Line 54: | Line 57: | ||
<math>\begin{array}{c} | <math>\begin{array}{c} | ||
S_1 \\ | S_1 \\ | ||
− | S_1 S_1 S_1 \\ | + | S_1 S_1 S_1 S_1 \\ |
− | S_1 S_1 S_1 \\ | + | S_1 S_1 S_1 S_1 S_1 S_1 \\ |
+ | S_1 S_1 S_1 S_1 \\ | ||
S_1 \\ | S_1 \\ | ||
− | |||
\end{array} | \end{array} | ||
</math> | </math> | ||
Line 65: | Line 68: | ||
All irreducible characters have height zero. | All irreducible characters have height zero. | ||
− | [[C2xC2xC2|Back to <math> | + | [[C2xC2xC2|Back to <math>(C_2</math>]] |
Latest revision as of 13:25, 27 November 2019
Representative: | [math]k(C_2 \times C_2 \times C_2)[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2 \times C_2[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 8 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_2 \times C_2 \times C_2)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math](C_2 \times C_2 \times C_2):GL_3(2)[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
These are nilpotent blocks.
Contents
Basic algebra
Quiver: a:<1,1>, b:<1,1>, c:<1,1>
Relations w.r.t. [math]k[/math]: a^2=b^2=b^c=0, ab+ba=ac+ca=bc+cb=0
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(8,5,1), then [math]B[/math] is in M(8,5,1), M(8,5,3), M(8,5,4) or M(8,5,6).
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{c} S_1 \\ S_1 S_1 S_1 S_1 \\ S_1 S_1 S_1 S_1 S_1 S_1 \\ S_1 S_1 S_1 S_1 \\ S_1 \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.