Difference between revisions of "D8*C4"
(Created page with "__NOTITLE__ == Blocks with defect group <math>D_8 * C_4</math> == The invariants <math>k(B)</math>, <math>k_i(B)</math> and <math>l(B)</math> are determined in References|...") |
m |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
== Blocks with defect group <math>D_8 * C_4</math> == | == Blocks with defect group <math>D_8 * C_4</math> == | ||
− | The invariants <math>k(B)</math>, <math>k_i(B)</math> and <math>l(B)</math> are determined in [[References|[Sa13b]]]. There is as yet no classification of blocks with these defect groups, and Donovan's conjecture is not known in any form. | + | The invariants <math>k(B)</math>, <math>k_i(B)</math> and <math>l(B)</math> are determined in [[References|[Sa13b]]]. There is precisely one saturated fusion system on <math>D_8 * C_4 \cong Q_8*C_4</math>. There is as yet no classification of blocks with these defect groups, and Donovan's conjecture is not known in any form. |
− | '''<pre style="color: red"> | + | '''<pre style="color: red">CLASSES NOT CLASSIFIED</pre>''' |
− | + | ||
+ | {| class="wikitable" | ||
|- | |- | ||
! scope="col"| Class | ! scope="col"| Class | ||
Line 22: | Line 23: | ||
|- | |- | ||
− | |[[M(16, | + | |[[M(16,13,1)]] || <math>k(Q_8*C_4)</math> || 1 ||10 ||1 ||<math>1</math> || || ||1 ||1 || |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | |[[M(16, | + | |[[M(16,13,2)]] || <math>B_0(k(SL_2(5)*C_4))</math> || ? ||14 ||3 ||<math>1</math> || || ||1 ||1 || |
|- | |- | ||
− | |[[M(16, | + | |[[M(16,13,3)]] || <math>k(SL_2(3)*C_4)</math> || ? ||14 ||3 ||<math>1</math> || || ||1 ||1 || |
|} | |} | ||
− | + | If <math>B</math> is not nilpotent, then <math>k_0(B)=8, k_1(B)=6, l(B)=3</math>. | |
− | |||
− | |||
== Notes == | == Notes == | ||
<references /> | <references /> |
Latest revision as of 11:47, 15 August 2019
Blocks with defect group [math]D_8 * C_4[/math]
The invariants [math]k(B)[/math], [math]k_i(B)[/math] and [math]l(B)[/math] are determined in [Sa13b]. There is precisely one saturated fusion system on [math]D_8 * C_4 \cong Q_8*C_4[/math]. There is as yet no classification of blocks with these defect groups, and Donovan's conjecture is not known in any form.
CLASSES NOT CLASSIFIED
Class | Representative | # lifts / [math]\mathcal{O}[/math] | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|---|
M(16,13,1) | [math]k(Q_8*C_4)[/math] | 1 | 10 | 1 | [math]1[/math] | 1 | 1 | |||
M(16,13,2) | [math]B_0(k(SL_2(5)*C_4))[/math] | ? | 14 | 3 | [math]1[/math] | 1 | 1 | |||
M(16,13,3) | [math]k(SL_2(3)*C_4)[/math] | ? | 14 | 3 | [math]1[/math] | 1 | 1 |
If [math]B[/math] is not nilpotent, then [math]k_0(B)=8, k_1(B)=6, l(B)=3[/math].