Difference between revisions of "D8xC2"

From Block library
Jump to: navigation, search
(Created page with "__NOTITLE__ == Blocks with defect group <math>D_8 \times C_2</math> == The invariants <math>k(B)</math>, <math>k_i(B)</math> and <math>l(B)</math> are determined in Refere...")
 
 
Line 7: Line 7:
 
'''<pre style="color: red">CLASSIFICATION INCOMPLETE</pre>'''
 
'''<pre style="color: red">CLASSIFICATION INCOMPLETE</pre>'''
  
<!--{| class="wikitable"
+
{| class="wikitable"
 
|-
 
|-
 
! scope="col"| Class
 
! scope="col"| Class
Line 22: Line 22:
  
 
|-
 
|-
|[[M(16,9,1)]] || <math>kSD_{16}</math> || 1 ||7 ||1 ||<math>1</math> || || || ||1 ||
+
|[[M(16,11,1)]] || <math>k(D_8 \times C_2)</math> || ? ||10 ||1 ||<math>1</math> || || || ||1 ||
 
|-
 
|-
|[[M(16,9,2)]] || <math>B_0(k \tilde{S}_5)</math><ref>This is the double cover SmallGroup(240,89)</ref> || ? ||8 ||2 ||<math>1</math> || || || ||1 || <math>Q(2 {\cal A})</math>
+
|[[M(16,11,2)]] || <math>B_0(k(PGL_2(5) \times C_2))</math> || ? ||10 ||2 ||<math>1</math> || || || ||1 ||  
 
|-
 
|-
|[[M(16,9,3)]] || <math>B_0(k \tilde{S}_4)</math><ref>This is the double cover SmallGroup(48,28)</ref> || ? ||8 ||2 ||<math>1</math> || || || ||1 || <math>Q(2 {\cal B})_1</math>
+
|[[M(16,11,3)]] || <math>k(S_4 \times C_2)</math> || ? ||10 ||2 ||<math>1</math> || || || ||1 ||  
 
|-
 
|-
|[[M(16,9,4)]] || <math>B_0(kSL_2(9))</math> || 1 ||9 ||3 ||<math>1</math> || || || ||1 || <math>Q(3 {\cal A})_2</math>
+
|[[M(16,11,4)]] || <math>B_0(k(PSL_2(9) \times C_2))</math> || ? ||10 ||3 ||<math>1</math> || || || ||1 ||  
 
|-
 
|-
|[[M(16,9,5)]] || <math>B_0(k(2.A_7))</math> || 1 ||10 ||3 ||<math>1</math> || || || ||1 || <math>Q(3 {\cal B})</math>
+
|[[M(16,11,5)]] || <math>B_0(k(A_7 \times C_2))</math> || ? ||10 ||3 ||<math>1</math> || || || ||1 ||  
 
|-
 
|-
|[[M(16,9,6)]] || <math>B_0(kSL_2(7))</math> || 1 ||9 ||3 ||<math>1</math> || || || ||1 || <math>Q(3 {\cal K})</math>
+
|[[M(16,11,6)]] || <math>B_0(k(PSL_2(7) \times C_2))</math> || ? ||10 ||3 ||<math>1</math> || || || ||1 ||  
 
|}
 
|}
  
[[M(16,9,2)]] and [[M(16,9,3)]] are derived equivalent over <math>k</math> by [[References|[Ho97]]], in which it is further proved that ''all'' blocks with defect group <math>Q_{16}</math> and two simple modules are derived equivalent (irrespective of the unknown cases in the classification).
+
 
 
[[M(16,9,4)]], [[M(16,9,5)]] and [[M(16,9,6)]] are derived equivalent over <math>\mathcal{O}</math> by [[References|[Ei16]]]<ref>This result was obtained over <math>k</math> in [[References|[Ho97]]]</ref>.-->
 
  
 
== Notes ==
 
== Notes ==
  
 
<references />
 
<references />

Latest revision as of 11:21, 4 January 2019

Blocks with defect group [math]D_8 \times C_2[/math]

The invariants [math]k(B)[/math], [math]k_i(B)[/math] and [math]l(B)[/math] are determined in [Sa12]. There is as yet no classification of blocks with these defect groups, and Donovan's conjecture is not known in any form.

CLASSIFICATION INCOMPLETE
Class Representative # lifts / [math]\mathcal{O}[/math] [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(16,11,1) [math]k(D_8 \times C_2)[/math]  ? 10 1 [math]1[/math] 1
M(16,11,2) [math]B_0(k(PGL_2(5) \times C_2))[/math]  ? 10 2 [math]1[/math] 1
M(16,11,3) [math]k(S_4 \times C_2)[/math]  ? 10 2 [math]1[/math] 1
M(16,11,4) [math]B_0(k(PSL_2(9) \times C_2))[/math]  ? 10 3 [math]1[/math] 1
M(16,11,5) [math]B_0(k(A_7 \times C_2))[/math]  ? 10 3 [math]1[/math] 1
M(16,11,6) [math]B_0(k(PSL_2(7) \times C_2))[/math]  ? 10 3 [math]1[/math] 1


Notes