Difference between revisions of "C(3^n)"

From Block library
Jump to: navigation, search
(Added example of q_n)
m
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
== Blocks with defect group <math>C_{3^n}</math> ==
 
== Blocks with defect group <math>C_{3^n}</math> ==
  
These are blocks with [[cyclic defect groups]] and so they are described by [[Brauer trees]].
+
These are [[blocks with cyclic defect groups]] and so they are described by [[Brauer trees]].
  
For each <math>n>1</math> there are three <math>\mathcal{O}</math>-Morita equivalence classes, accounting for all the possible Brauer trees. For <math>n=1</math> there are just two Morita equivalence classes (see [[C3]]).
+
For each <math>n>1</math> there are three <math>\mathcal{O}</math>-Morita equivalence classes, accounting for all the [[Glossary#Possible Brauer tree|possible Brauer trees]]. For <math>n=1</math> there are just two Morita equivalence classes (see [[C3|<math>C_3</math>]]).
  
In the below <math>q_n</math> is a prime power such that <math>(q_n+1)_3=3^n</math>. For example take <math>q_n=2^{3^{n-1}}</math>.
+
In the following <math>q_n</math> is a prime power such that <math>(q_n+1)_3=3^n</math>. For example take <math>q_n=2^{3^{n-1}}</math>.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 23: Line 23:
  
 
|-
 
|-
|[[M(3^n,1,1)|M(<math>3^n</math>,1,1)]] || <math>kC_{3^n}</math> || <math>3^n</math> ||1 ||<math>1</math> ||<math>C_{3^n} : C_{2.3^{n-1}}</math> || ||1 ||1 ||  
+
|[[M(3^n,1,1)|M(<math>3^n</math>,1,1)]] || <math>kC_{3^n}</math> || <math>3^n</math> ||1 ||<math>1</math> ||<math>C_{3^n} : C_{2.3^{n-1}}</math> || ||1 ||1 || [[Image:M(3^n,1,1)tree.png|45px]]
 
|-
 
|-
|[[M(3^n,1,2)|M(<math>3^n</math>,1,2)]] || <math>kD_{2.3^n}</math> ||<math>\frac{(3^n+3)}{2}</math> ||2 ||<math>C_2</math> |||| ||1 ||1 ||
+
|[[M(3^n,1,2)|M(<math>3^n</math>,1,2)]] || <math>kD_{2.3^n}</math> ||<math>\frac{(3^n+3)}{2}</math> ||2 ||<math>C_2</math> |||| ||1 ||1 || [[Image:M(3^n,1,2)tree.png|45px]]
 
|-
 
|-
|[[M(3^n,1,3)|M(<math>3^n</math>,1,3)]] || <math>B_0(kPSL_2(q_n))</math> ||<math>\frac{(3^n+3)}{2}</math> ||2 ||<math>C_2</math> || || ||1 ||1 ||
+
|[[M(3^n,1,3)|M(<math>3^n</math>,1,3)]] || <math>B_0(kPSL_2(q_n))</math> ||<math>\frac{(3^n+3)}{2}</math> ||2 ||<math>C_2</math> || || ||1 ||1 || [[Image:M(3^n,1,3)tree.png|45px]]
 
|}
 
|}
  
 
Blocks in [[M(3^n,1,2)|M(<math>3^n</math>,1,2)]] are derived equivalent (over <math>\mathcal{O}</math>) to those in [[M(3^n,1,3)|M(<math>3^n</math>,1,3)]].
 
Blocks in [[M(3^n,1,2)|M(<math>3^n</math>,1,2)]] are derived equivalent (over <math>\mathcal{O}</math>) to those in [[M(3^n,1,3)|M(<math>3^n</math>,1,3)]].

Latest revision as of 22:34, 2 January 2019

Blocks with defect group [math]C_{3^n}[/math]

These are blocks with cyclic defect groups and so they are described by Brauer trees.

For each [math]n\gt 1[/math] there are three [math]\mathcal{O}[/math]-Morita equivalence classes, accounting for all the possible Brauer trees. For [math]n=1[/math] there are just two Morita equivalence classes (see [math]C_3[/math]).

In the following [math]q_n[/math] is a prime power such that [math](q_n+1)_3=3^n[/math]. For example take [math]q_n=2^{3^{n-1}}[/math].

Class Representative [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M([math]3^n[/math],1,1) [math]kC_{3^n}[/math] [math]3^n[/math] 1 [math]1[/math] [math]C_{3^n} : C_{2.3^{n-1}}[/math] 1 1 M(3^n,1,1)tree.png
M([math]3^n[/math],1,2) [math]kD_{2.3^n}[/math] [math]\frac{(3^n+3)}{2}[/math] 2 [math]C_2[/math] 1 1 M(3^n,1,2)tree.png
M([math]3^n[/math],1,3) [math]B_0(kPSL_2(q_n))[/math] [math]\frac{(3^n+3)}{2}[/math] 2 [math]C_2[/math] 1 1 M(3^n,1,3)tree.png

Blocks in M([math]3^n[/math],1,2) are derived equivalent (over [math]\mathcal{O}[/math]) to those in M([math]3^n[/math],1,3).