Difference between revisions of "Classification by p-group"
Line 30: | Line 30: | ||
| 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | | 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
|- | |- | ||
− | | 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | + | | 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Er82], [Li94] ]] || |
|- | |- | ||
|5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
Line 44: | Line 44: | ||
|8 || [[Q8|4]] || [[Q8|<math>Q_8</math>]] ||3(?) || <math>k</math> || || || | |8 || [[Q8|4]] || [[Q8|<math>Q_8</math>]] ||3(?) || <math>k</math> || || || | ||
|- | |- | ||
− | |8 || [[C2xC2xC2|5]] || [[C2xC2xC2|<math>C_2 \times C_2 \times C_2</math>]] || 8(8) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || Uses CFSG | + | |8 || [[C2xC2xC2|5]] || [[C2xC2xC2|<math>C_2 \times C_2 \times C_2</math>]] || 8(8) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References| [Ea16]]] || Uses CFSG |
|- | |- | ||
|9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
Line 56: | Line 56: | ||
|16 || [[C16|1]] || [[C16|<math>C_{16}</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |16 || [[C16|1]] || [[C16|<math>C_{16}</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
|- | |- | ||
− | |16 || [[C4xC4|2]] || [[C4xC4|<math>C_4 \times C_4</math>]] || || || || || | + | |16 || [[C4xC4|2]] || [[C4xC4|<math>C_4 \times C_4</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14] ]] || |
|- | |- | ||
− | |16 || [[SmallGroup(16,3)|3]] || [[SmallGroup(16,3)]] || || || || || | + | |16 || [[SmallGroup(16,3)|3]] || [[SmallGroup(16,3)]] || || || || [[References|[Sa11] ]] || Block invariants known |
|- | |- | ||
|16 || [[C4:C4|4]] || [[C4:C4|<math>C_4:C_4</math>]] || || || || || | |16 || [[C4:C4|4]] || [[C4:C4|<math>C_4:C_4</math>]] || || || || || | ||
|- | |- | ||
− | |16 || [[C8xC2|5]] || [[C8xC2|<math>C_8 \times C_2</math>]] || || || || || | + | |16 || [[C8xC2|5]] || [[C8xC2|<math>C_8 \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || |
|- | |- | ||
|16 || [[M16|6]] || [[M16|<math>M_{16}</math>]] || || || || || | |16 || [[M16|6]] || [[M16|<math>M_{16}</math>]] || || || || || | ||
Line 72: | Line 72: | ||
|16 || [[Q16|9]] || [[Q16|<math>Q_{16}</math>]] || || || || || | |16 || [[Q16|9]] || [[Q16|<math>Q_{16}</math>]] || || || || || | ||
|- | |- | ||
− | |16 || [[C4xC2xC2|10]] || [[C4xC2xC2|<math>C_4 \times C_2 \times C_2</math>]] || || || || || | + | |16 || [[C4xC2xC2|10]] || [[C4xC2xC2|<math>C_4 \times C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EL18a] ]] || |
|- | |- | ||
|16 || [[D8xC2|11]] || [[D8xC2|<math>D_8 \times C_2</math>]] || || || || || | |16 || [[D8xC2|11]] || [[D8xC2|<math>D_8 \times C_2</math>]] || || || || || | ||
Line 80: | Line 80: | ||
|16 || [[D8*C4|13]] || [[D8*C4|<math>D_8*C_4</math>]] || || || || || | |16 || [[D8*C4|13]] || [[D8*C4|<math>D_8*C_4</math>]] || || || || || | ||
|- | |- | ||
− | |16 || [[(C2)^4|14]] || [[(C2)^4|<math>(C_2)^4</math>]] || || || || || | + | |16 || [[(C2)^4|14]] || [[(C2)^4|<math>(C_2)^4</math>]] || 16(16) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Ea18] ]] || |
|} | |} |
Revision as of 08:27, 28 August 2018
Classification of Morita equivalences for blocks with a given defect group
On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Information on broad classes of p-groups can be found here.
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
1 | 1 | [math]1[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
2 | 1 | [math]C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
3 | 1 | [math]C_3[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 1 | [math]C_4[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 2 | [math]C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Er82], [Li94] | |
5 | 1 | [math]C_5[/math] | 6(6) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
7 | 1 | [math]C_7[/math] | 14(14) | No | [math]\mathcal{O}[/math] | Max 19 classes | |
8 | 1 | [math]C_8[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 2 | [math]C_4 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 3 | [math]D_8[/math] | 4(?) | [math]k[/math] | |||
8 | 4 | [math]Q_8[/math] | 3(?) | [math]k[/math] | |||
8 | 5 | [math]C_2 \times C_2 \times C_2[/math] | 8(8) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Ea16] | Uses CFSG |
9 | 1 | [math]C_9[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
9 | 2 | [math]C_3 \times C_3[/math] | |||||
11 | 1 | [math]C_{11}[/math] | No | [math]\mathcal{O}[/math] | |||
13 | 1 | [math]C_{13}[/math] | No | [math]\mathcal{O}[/math] | |||
16 | 1 | [math]C_{16}[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
16 | 2 | [math]C_4 \times C_4[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [EKKS14] | |
16 | 3 | SmallGroup(16,3) | [Sa11] | Block invariants known | |||
16 | 4 | [math]C_4:C_4[/math] | |||||
16 | 5 | [math]C_8 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
16 | 6 | [math]M_{16}[/math] | |||||
16 | 7 | [math]D_{16}[/math] | |||||
16 | 8 | [math]SD_{16}[/math] | |||||
16 | 9 | [math]Q_{16}[/math] | |||||
16 | 10 | [math]C_4 \times C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [EL18a] | |
16 | 11 | [math]D_8 \times C_2[/math] | |||||
16 | 12 | [math]Q_8 \times C_2[/math] | |||||
16 | 13 | [math]D_8*C_4[/math] | |||||
16 | 14 | [math](C_2)^4[/math] | 16(16) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Ea18] |