Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Blocks for p=2)
Line 59: Line 59:
 
! scope="col"| SmallGroup  
 
! scope="col"| SmallGroup  
 
! scope="col"| Isotype
 
! scope="col"| Isotype
 +
! scope="col"| Donovan (w.r.t)?
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Complete (w.r.t.)?
Line 65: Line 66:
 
! scope="col"| Notes
 
! scope="col"| Notes
 
|-  
 
|-  
|16 || [[C16|1]] || [[C16|<math>C_{16}</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
+
|16 || [[C16|1]] || [[C16|<math>C_{16}</math>]] || <math>\mathcal{O}</math> ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|-
 
|-
|16 || [[C4xC4|2]] || [[C4xC4|<math>C_4 \times C_4</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14] ]] ||
+
|16 || [[C4xC4|2]] || [[C4xC4|<math>C_4 \times C_4</math>]] || <math>\mathcal{O}</math> || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EKKS14] ]] ||
 
|-
 
|-
|16 || [[MNA(2,1)|3]] || [[MNA(2,1)]] || || || || [[References|[Sa11] ]] || Block invariants known
+
|16 || [[MNA(2,1)|3]] || [[MNA(2,1)]] || No || || || || [[References|[Sa11] ]] || Block invariants known
 
|-
 
|-
|16 || [[C4:C4|4]] || [[C4:C4|<math>C_4:C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
+
|16 || [[C4:C4|4]] || [[C4:C4|<math>C_4:C_4</math>]] || <math>\mathcal{O}</math>|| 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b]]] ||
 
|-
 
|-
|16 || [[C8xC2|5]] || [[C8xC2|<math>C_8 \times C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
+
|16 || [[C8xC2|5]] || [[C8xC2|<math>C_8 \times C_2</math>]]|| <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|-
 
|-
|16 || [[M16|6]] || [[M16|<math>M_{16}</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b] ]] ||  
+
|16 || [[M16|6]] || [[M16|<math>M_{16}</math>]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[CG12], [Sa12b] ]] ||  
 
|-
 
|-
|16 || [[D16|7]] || [[D16|<math>D_{16}</math>]] || 5(?) || <math>k</math> || <math>k</math> || [[References|[Er87]]] ||
+
|16 || [[D16|7]] || [[D16|<math>D_{16}</math>]] || <math>k</math>|| 5(?) || <math>k</math> || <math>k</math> || [[References|[Er87]]] ||
 
|-
 
|-
|16 || [[SD16|8]] || [[SD16|<math>SD_{16}</math>]] || 8(?) || || || [[References|[Er88c], [Er90b]]] || Two other possible classes
+
|16 || [[SD16|8]] || [[SD16|<math>SD_{16}</math>]] || <math>k</math> || 8(?) || || || [[References|[Er88c], [Er90b]]] || Two other possible classes
 
|-
 
|-
|16 || [[Q16|9]] || [[Q16|<math>Q_{16}</math>]] || || || || ||
+
|16 || [[Q16|9]] || [[Q16|<math>Q_{16}</math>]] || No || 6(?) || || || [[References|[Er88a], [Er88b]]] || Two possibly infinite families
 
|-
 
|-
|16 || [[C4xC2xC2|10]] || [[C4xC2xC2|<math>C_4 \times C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EL18a]]] ||
+
|16 || [[C4xC2xC2|10]] || [[C4xC2xC2|<math>C_4 \times C_2 \times C_2</math>]]|| <math>\mathcal{O}</math> || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[EL18a]]] ||
 
|-
 
|-
|16 || [[D8xC2|11]] || [[D8xC2|<math>D_8 \times C_2</math>]] || || || || [[References|[Sa12] ]] || Block invariants known
+
|16 || [[D8xC2|11]] || [[D8xC2|<math>D_8 \times C_2</math>]] || No || || || || [[References|[Sa12] ]] || Block invariants known
 
|-
 
|-
|16 || [[Q8xC2|12]] || [[Q8xC2|<math>Q_8 \times C_2</math>]] || || || || [[References|[Sa13] ]] || Block invariants known
+
|16 || [[Q8xC2|12]] || [[Q8xC2|<math>Q_8 \times C_2</math>]] || No || || || || [[References|[Sa13] ]] || Block invariants known
 
|-
 
|-
|16 || [[D8*C4|13]] || [[D8*C4|<math>D_8*C_4</math>]] || || || || [[References|[Sa13b] ]] || Block invariants known
+
|16 || [[D8*C4|13]] || [[D8*C4|<math>D_8*C_4</math>]] || No || || || || [[References|[Sa13b] ]] || Block invariants known
 
|-
 
|-
|16 || [[(C2)^4|14]] || [[(C2)^4|<math>(C_2)^4</math>]] || 16(16) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Ea18] ]] ||
+
|16 || [[(C2)^4|14]] || [[(C2)^4|<math>(C_2)^4</math>]] || <math>\mathcal{O}</math> || 16(16) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Ea18] ]] ||
 
|}
 
|}
  

Revision as of 09:06, 26 November 2018

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks of defect zero

Blocks for [math] p=2 [/math]

The following takes as its starting point Table 13.1 of Sambale's book [Sa14].

Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]