Difference between revisions of "M(8,4,2)"
(Created page with "{{blockbox |title = M(8,4,2) - <math>B_0(kSL_2(5))</math> |image = M(4,2,2)quiver.png |representative = <math>B_0(kSL_2(5))</math> |defect = <math>Q_8</math> |inertia...") |
|||
Line 51: | Line 51: | ||
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
− | + | Labelling the simple <math>B</math>-modules by <math>1,2,3</math>, the projective indecomposable modules have Loewy structure as follows: | |
<math>\begin{array}{ccc} | <math>\begin{array}{ccc} | ||
Line 62: | Line 62: | ||
\end{array}, | \end{array}, | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 2 \\ | |
− | + | 1 \ 3 \\ | |
− | + | 2 \ 2 \\ | |
+ | 3 \ 1 \\ | ||
+ | 2 \ 2 \\ | ||
+ | 1 \ 3 \\ | ||
+ | 2 \ 2 \\ | ||
+ | 3 \ 1 \\ | ||
+ | 2 \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
Line 76: | Line 82: | ||
\end{array} | \end{array} | ||
\end{array} | \end{array} | ||
− | </math | + | </math> |
== Irreducible characters == | == Irreducible characters == |
Revision as of 17:51, 6 October 2018
Representative: | [math]B_0(kSL_2(5))[/math] |
---|---|
Defect groups: | [math]Q_8[/math] |
Inertial quotients: | [math]C_3[/math] |
[math]k(B)=[/math] | 5 |
[math]l(B)=[/math] | 3 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccc} 4 & 4 & 2 \\ 4 & 8 & 4 \\ 2 & 4 & 4 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}SL_2(5))[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,2,3) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | No |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are tame blocks, and appear in the family [math]D(3 {\cal A})_2[/math] in Erdmann's classification (see [Er88a], [Er88b]). The class lifts to a unique [math]\mathcal{O}[/math]-Morita equivalence class by [Ei16]. A derived equivalence with M(8,4,3) over [math]k[/math] was established in [Ho97].
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,2>, d:<2,1>
Relations w.r.t. [math]k[/math]: ada=abcdabc, dad=bcdabcd, cbc=cdabcda, bcb=dabcdab, adab=cbcd
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]1,2,3[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccc} \begin{array}{ccc} & 1 & \\ & 2 & \\ \begin{array}{c} 1 \\ \end{array} & \oplus & \begin{array}{c} 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ \end{array} \\ & 2 & \\ & 1 & \\ \end{array}, & \begin{array}{c} 2 \\ 1 \ 3 \\ 2 \ 2 \\ 3 \ 1 \\ 2 \ 2 \\ 1 \ 3 \\ 2 \ 2 \\ 3 \ 1 \\ 2 \\ \end{array}, & \begin{array}{ccc} & 3 & \\ & 2 & \\ \begin{array}{c} 3 \\ \end{array} & \oplus & \begin{array}{c} 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ \end{array} \\ & 2 & \\ & 3 & \\ \end{array} \end{array} [/math]
Irreducible characters
[math]k_0(B)=4, k_1(B)=1[/math]