Difference between revisions of "M(8,4,2)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(8,4,2) - <math>B_0(kSL_2(5))</math> |image = M(4,2,2)quiver.png |representative = <math>B_0(kSL_2(5))</math> |defect = <math>Q_8</math> |inertia...")
 
Line 51: Line 51:
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==
  
<!--Labelling the simple <math>B</math>-modules by <math>1,2,3</math>, the projective indecomposable modules have Loewy structure as follows:
+
Labelling the simple <math>B</math>-modules by <math>1,2,3</math>, the projective indecomposable modules have Loewy structure as follows:
  
 
<math>\begin{array}{ccc}
 
<math>\begin{array}{ccc}
Line 62: Line 62:
 
   \end{array},
 
   \end{array},
 
&
 
&
   \begin{array}{ccc}
+
   \begin{array}{c}
     & S_2 & \\
+
     2 \\
      \begin{array}{c} S_1 \\ S_2 \\ S_3 \\ \end{array} & \oplus & \begin{array}{c} S_3 \\ S_2 \\ S_1 \\ \end{array} \\
+
    1 \ 3 \\
     & S_2 & \\
+
    2 \ 2 \\
 +
    3 \ 1 \\
 +
    2 \ 2 \\
 +
    1 \ 3 \\
 +
    2 \ 2 \\
 +
    3 \ 1 \\
 +
     2 \\
 
   \end{array},
 
   \end{array},
 
&  
 
&  
Line 76: Line 82:
 
   \end{array}
 
   \end{array}
 
\end{array}
 
\end{array}
</math>-->
+
</math>
  
 
== Irreducible characters ==
 
== Irreducible characters ==

Revision as of 17:51, 6 October 2018

M(8,4,2) - [math]B_0(kSL_2(5))[/math]
M(4,2,2)quiver.png
Representative: [math]B_0(kSL_2(5))[/math]
Defect groups: [math]Q_8[/math]
Inertial quotients: [math]C_3[/math]
[math]k(B)=[/math] 5
[math]l(B)=[/math] 3
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{ccc} 4 & 4 & 2 \\ 4 & 8 & 4 \\ 2 & 4 & 4 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}SL_2(5))[/math]
Decomposition matrices: [math]\left( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,2,3)
[math]\mathcal{O}[/math]-derived equiv. classes known? No
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

These are tame blocks, and appear in the family [math]D(3 {\cal A})_2[/math] in Erdmann's classification (see [Er88a], [Er88b]). The class lifts to a unique [math]\mathcal{O}[/math]-Morita equivalence class by [Ei16]. A derived equivalence with M(8,4,3) over [math]k[/math] was established in [Ho97].


Basic algebra

Quiver: a:<1,2>, b:<2,3>, c:<3,2>, d:<2,1>

Relations w.r.t. [math]k[/math]: ada=abcdabc, dad=bcdabcd, cbc=cdabcda, bcb=dabcdab, adab=cbcd

Other notatable representatives

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]1,2,3[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccc} \begin{array}{ccc} & 1 & \\ & 2 & \\ \begin{array}{c} 1 \\ \end{array} & \oplus & \begin{array}{c} 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ \end{array} \\ & 2 & \\ & 1 & \\ \end{array}, & \begin{array}{c} 2 \\ 1 \ 3 \\ 2 \ 2 \\ 3 \ 1 \\ 2 \ 2 \\ 1 \ 3 \\ 2 \ 2 \\ 3 \ 1 \\ 2 \\ \end{array}, & \begin{array}{ccc} & 3 & \\ & 2 & \\ \begin{array}{c} 3 \\ \end{array} & \oplus & \begin{array}{c} 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ \end{array} \\ & 2 & \\ & 3 & \\ \end{array} \end{array} [/math]

Irreducible characters

[math]k_0(B)=4, k_1(B)=1[/math]

Back to [math]Q_8[/math]