Difference between revisions of "M(16,2,2)"
(→Projective indecomposable modules) |
|||
Line 51: | Line 51: | ||
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
− | + | Labelling the simple <math>B</math>-modules by <math>1,2,3</math>, the projective indecomposable modules have Loewy structure as follows: | |
<math>\begin{array}{ccc} | <math>\begin{array}{ccc} | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 1 \\ | |
− | + | 2 \ 3 \\ | |
− | + | 3 \ 1 \ 2 \\ | |
+ | 1 \ 2 \ 3 \ 1 \\ | ||
+ | 3 \ 1 \ 2 \\ | ||
+ | 2 \ 3 \\ | ||
+ | 1 \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 2 \\ | |
− | + | 1 \ 3 \\ | |
− | + | 3 \ 2 \ 1 \\ | |
+ | 2 \ 1 \ 3 \ 2 \\ | ||
+ | 3 \ 2 \ 1 \\ | ||
+ | 1 \ 3 \\ | ||
+ | 2 \\ | ||
\end{array}, | \end{array}, | ||
& | & | ||
− | \begin{array}{ | + | \begin{array}{c} |
− | + | 3 \\ | |
− | + | 1 \ 2 \\ | |
− | + | 2 \ 3 \ 1 \\ | |
− | \end{array} | + | 3 \ 1 \ 2 \ 3 \\ |
+ | 2 \ 3 \ 1 \\ | ||
+ | 1 \ 2 \\ | ||
+ | 2 \\ | ||
+ | \end{array} | ||
\end{array} | \end{array} | ||
− | </math | + | </math> |
== Irreducible characters == | == Irreducible characters == |
Revision as of 08:42, 4 October 2018
Representative: | [math]k((C_4 \times C_4):C_3)[/math] |
---|---|
Defect groups: | [math]C_4 \times C_4[/math] |
Inertial quotients: | [math]C_3[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 3 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | [math][/math] |
Cartan matrix: | [math]\left( \begin{array}{ccc} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O}((C_4 \times C_4):C_3)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]S_3[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms its own derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | M(16,2,1) |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3>
Relations w.r.t. [math]k[/math]: abca=bcab=cabc=0, dfed=fedf=edfe=0, ad=fc, be=da, cf=eb
Other notatable representatives
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]1,2,3[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccc} \begin{array}{c} 1 \\ 2 \ 3 \\ 3 \ 1 \ 2 \\ 1 \ 2 \ 3 \ 1 \\ 3 \ 1 \ 2 \\ 2 \ 3 \\ 1 \\ \end{array}, & \begin{array}{c} 2 \\ 1 \ 3 \\ 3 \ 2 \ 1 \\ 2 \ 1 \ 3 \ 2 \\ 3 \ 2 \ 1 \\ 1 \ 3 \\ 2 \\ \end{array}, & \begin{array}{c} 3 \\ 1 \ 2 \\ 2 \ 3 \ 1 \\ 3 \ 1 \ 2 \ 3 \\ 2 \ 3 \ 1 \\ 1 \ 2 \\ 2 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.