Difference between revisions of "M(16,2,2)"
(Created page with "50px|left {{blockbox |title = M(16,2,2) - <math>k((C_4 \times C_4):C_3)</math> |image = M(4,2,3)quiver.png |representative = <math>k((C_4 \...") |
|||
Line 12: | Line 12: | ||
|Pic-k= <math></math> | |Pic-k= <math></math> | ||
|cartan = <math>\left( \begin{array}{ccc} | |cartan = <math>\left( \begin{array}{ccc} | ||
− | + | 6 & 5 & 5 \\ | |
− | + | 5 & 6 & 5 \\ | |
− | + | 5 & 5 & 6 \\ | |
\end{array} \right)</math> | \end{array} \right)</math> | ||
|defect-morita-inv? = Yes | |defect-morita-inv? = Yes | ||
|inertial-morita-inv? = Yes | |inertial-morita-inv? = Yes | ||
|O-morita? = Yes | |O-morita? = Yes | ||
− | |O-morita = <math>\mathcal{O} | + | |O-morita = <math>\mathcal{O}((C_4 \times C_4):C_3)</math> |
|decomp = <math>\left( \begin{array}{ccc} | |decomp = <math>\left( \begin{array}{ccc} | ||
1 & 0 & 0 \\ | 1 & 0 & 0 \\ | ||
0 & 1 & 0 \\ | 0 & 1 & 0 \\ | ||
0 & 0 & 1 \\ | 0 & 0 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
1 & 1 & 1 \\ | 1 & 1 & 1 \\ | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
− | |Pic-O = <math> | + | |Pic-O = <math>S_3</math> |
− | |source? = | + | |source? = No |
− | |sourcereps = | + | |sourcereps = |
|k-derived-known? = Yes | |k-derived-known? = Yes | ||
− | |k-derived = | + | |k-derived = Forms its own derived equivalence class |
|O-derived-known? = Yes | |O-derived-known? = Yes | ||
+ | |coveringblocks = | ||
+ | |coveredblocks = [[M(16,2,1)]] | ||
}} | }} | ||
Line 39: | Line 45: | ||
'''Quiver:''' a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3> | '''Quiver:''' a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3> | ||
− | '''Relations w.r.t. <math>k</math>:''' | + | '''Relations w.r.t. <math>k</math>:''' abca=bcab=cabc=0, dfed=fedf=edfe=0, ad=fc, be=da, cf=eb |
== Other notatable representatives == | == Other notatable representatives == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
− | Labelling the simple <math>B</math>-modules by <math>S_1, S_2, S_3</math>, the projective indecomposable modules have Loewy structure as follows: | + | <!-- Labelling the simple <math>B</math>-modules by <math>S_1, S_2, S_3</math>, the projective indecomposable modules have Loewy structure as follows: |
<math>\begin{array}{ccc} | <math>\begin{array}{ccc} | ||
Line 77: | Line 72: | ||
\end{array} | \end{array} | ||
\end{array} | \end{array} | ||
− | </math> | + | </math> --> |
== Irreducible characters == | == Irreducible characters == | ||
Line 86: | Line 81: | ||
[[C2xC2|Back to <math>C_2 \times C_2</math>]] | [[C2xC2|Back to <math>C_2 \times C_2</math>]] | ||
− | [[Category: Morita equivalence classes| | + | [[Category: Morita equivalence classes|16,2,2]] |
− | [[Category: Blocks with defect group | + | [[Category: Blocks with defect group C4xC4]] |
[[Category: Tame blocks|4,2,3]] | [[Category: Tame blocks|4,2,3]] |
Revision as of 21:13, 3 October 2018
M(16,2,2) - [math]k((C_4 \times C_4):C_3)[/math]
Representative: | [math]k((C_4 \times C_4):C_3)[/math] |
---|---|
Defect groups: | [math]C_4 \times C_4[/math] |
Inertial quotients: | [math]C_3[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 3 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | [math][/math] |
Cartan matrix: | [math]\left( \begin{array}{ccc} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O}((C_4 \times C_4):C_3)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]S_3[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms its own derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | M(16,2,1) |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f:<1,3>
Relations w.r.t. [math]k[/math]: abca=bcab=cabc=0, dfed=fedf=edfe=0, ad=fc, be=da, cf=eb
Other notatable representatives
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.