Difference between revisions of "Status of Donovan's conjecture"

From Block library
Jump to: navigation, search
(Added photo)
Line 1: Line 1:
 
[[Image:Donovan.jpg|150px|thumb|right|Peter Donovan]]
 
[[Image:Donovan.jpg|150px|thumb|right|Peter Donovan]]
  
In this page we list cases where Donovan's conjecture is known to hold. The first list is organised by <math>p</math>-group, and the second by class of finite groups.
+
In this page we list cases where Donovan's conjecture is known to hold.  
  
PAGE UNDER CONSTRUCTION!
+
== Donovan's conjecture by <math>p</math>-group ==
  
== Donovan's conjecture by <math>p</math>-group ==
+
In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 15: Line 15:
 
! scope="col"| Notes
 
! scope="col"| Notes
 
|-
 
|-
|Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || ||
+
|Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || [[References|[Li96]]] ||
 +
|-
 +
|Abelian <math>2</math>-groups <math>P</math> such that <math>{\rm Aut}(P)</math> is a <math>2</math>-group || <math>\mathcal{O}</math> || Yes || || All blocks are nilpotent
 
|-
 
|-
|<math>C_2 \times C_2</math> || <math>\mathcal{O}</math> || Yes || [CEKL11] || Donovan's conjecture without CFSG, Puig using CFSG
+
|<math>C_2 \times C_2</math> || <math>\mathcal{O}</math> || Yes || [[References|[CEKL11]]] || Donovan's conjecture without CFSG, Puig using CFSG
 
|-
 
|-
|Abelian <math>2</math>-groups || <math>k</math> || No || ||
+
|Abelian <math>2</math>-groups || <math>k</math> || No || [[References|[EL18b]]] ||
 
|-
 
|-
 
|<math>C_3 \times C_3</math> || No || No || [Ko03] || Puig's conjecture known for principal blocks
 
|<math>C_3 \times C_3</math> || No || No || [Ko03] || Puig's conjecture known for principal blocks
 
|-
 
|-
|Dihedral <math>2</math>-groups || <math>k</math> || No || [Er90]] ||
+
|Dihedral <math>2</math>-groups || <math>k</math> || No || [[References|[Er87]]] ||
 
|-
 
|-
|Semidihedral <math>2</math>-groups || <math>k</math> || No || [Er90]] ||
+
|Semidihedral <math>2</math>-groups || <math>k</math> || No || [[References|[Er88c], [Er90b]]] ||
 
|-
 
|-
|Generalised quaternion <math>2</math>-groups || No || No || [Er90]] || Donovan's conjecture over <math>k</math> known if <math>l(B) \neq 2</math>
+
|Generalised quaternion <math>2</math>-groups || No || No || [[References|[Er88a], [Er88b]]] || Donovan's conjecture over <math>k</math> known if <math>l(B) \neq 2</math>
 
|-  
 
|-  
|Minimal nonabelian <math>2</math>-groups <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [EKS12] || Additional assumptions on <math>\mathcal{O}</math>, which may not be necessary
+
|Minimal nonabelian <math>2</math>-groups <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [[References|[EKS12]]] || Additional assumptions on <math>\mathcal{O}</math>, which may not be necessary
 
|}
 
|}

Revision as of 16:50, 14 September 2018

Peter Donovan

In this page we list cases where Donovan's conjecture is known to hold.

Donovan's conjecture by [math]p[/math]-group

In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].

[math]p[/math]-groups Donovan's conjecture Puig's conjecture References Notes
Cyclic [math]p[/math]-groups [math]\mathcal{O}[/math] Yes [Li96]
Abelian [math]2[/math]-groups [math]P[/math] such that [math]{\rm Aut}(P)[/math] is a [math]2[/math]-group [math]\mathcal{O}[/math] Yes All blocks are nilpotent
[math]C_2 \times C_2[/math] [math]\mathcal{O}[/math] Yes [CEKL11] Donovan's conjecture without CFSG, Puig using CFSG
Abelian [math]2[/math]-groups [math]k[/math] No [EL18b]
[math]C_3 \times C_3[/math] No No [Ko03] Puig's conjecture known for principal blocks
Dihedral [math]2[/math]-groups [math]k[/math] No [Er87]
Semidihedral [math]2[/math]-groups [math]k[/math] No [Er88c], [Er90b]
Generalised quaternion [math]2[/math]-groups No No [Er88a], [Er88b] Donovan's conjecture over [math]k[/math] known if [math]l(B) \neq 2[/math]
Minimal nonabelian [math]2[/math]-groups [math]\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] [math]\mathcal{O}[/math] No [EKS12] Additional assumptions on [math]\mathcal{O}[/math], which may not be necessary