Difference between revisions of "M(4,2,1)"
(Image added) |
(Covered and covering blocks) |
||
Line 29: | Line 29: | ||
|k-derived = Forms a derived equivalence class | |k-derived = Forms a derived equivalence class | ||
|O-derived-known? = Yes | |O-derived-known? = Yes | ||
+ | |coveringblocks = [[M(4,2,3)]] | ||
+ | |coveredblocks = [[M(4,2,3)]] | ||
}} | }} | ||
Revision as of 20:48, 9 September 2018
Representative: | [math]k(C_2 \times C_2)[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 4 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | [math](k \times k):GL_2(k)[/math] |
Cartan matrix: | [math]\left( \begin{array}{c} 4 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_2 \times C_2)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{L}(B)=S_4[/math] |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | Yes |
Source algebra reps: | [math]k(C_2 \times C_2)[/math] |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(4,2,3) |
[math]p'[/math]-index covered blocks: | M(4,2,3) |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
These are nilpotent blocks.
Contents
Basic algebra
Quiver: a:<1,1>, b:<1,1>
Relations w.r.t. [math]k[/math]: a^2=b^2=ab+ba=0
Other notatable representatives
Block number 4 of [math]k PGL_3(7)[/math] in the labelling used in [1]
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] lies in M(4,2,1), then [math]B[/math] must lie in M(4,2,1) or M(4,2,3). For example consider the principal blocks of [math]O_2(A_4) \triangleleft A_4[/math].
If [math]B[/math] lies in M(4,2,1), then [math]b[/math] must lie in M(4,2,1) or M(4,2,3). For example consider blocks of [math]PSL_3(7) \triangleleft PGL_3(7)[/math].
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{ccc} & S_1 & \\ S_1 & & S_1 \\ & S_1 & \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.