Difference between revisions of "Classification by p-group"
(Added C3 link) |
|||
Line 35: | Line 35: | ||
|- | |- | ||
|7 ||1 ||<math>C_7</math> ||14(14) ||No || <math>\mathcal{O}</math> || ||Max 19 classes | |7 ||1 ||<math>C_7</math> ||14(14) ||No || <math>\mathcal{O}</math> || ||Max 19 classes | ||
+ | |- | ||
+ | |8 ||1 ||<math>C_8</math> ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
+ | |- | ||
+ | |8 ||2 ||<math>C_4 \times C_2</math> ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
+ | |- | ||
+ | |8 ||3 ||<math>D_8</math> ||4(?) || <math>k</math> || || || | ||
+ | |- | ||
+ | |8 ||4 ||<math>Q_8</math> ||3(?) || <math>k</math> || || || | ||
+ | |- | ||
+ | |8 ||5 ||<math>C_2 \times C_2 \times C_2</math> || 8(8) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || Uses CFSG | ||
+ | |- | ||
+ | |9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
+ | |- | ||
+ | |9 ||2 ||<math>C_3 \times C_3</math> || || || || || | ||
|} | |} |
Revision as of 12:57, 23 August 2018
Classification of Morita equivalences for blocks with a given defect group
On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Information on broad classes of p-groups can be found here.
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
1 | 1 | [math]1[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
2 | 1 | [math]C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
3 | 1 | [math]C_3[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 1 | [math]C_4[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 2 | [math]C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
5 | 1 | [math]C_5[/math] | 6(6) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
7 | 1 | [math]C_7[/math] | 14(14) | No | [math]\mathcal{O}[/math] | Max 19 classes | |
8 | 1 | [math]C_8[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 2 | [math]C_4 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 3 | [math]D_8[/math] | 4(?) | [math]k[/math] | |||
8 | 4 | [math]Q_8[/math] | 3(?) | [math]k[/math] | |||
8 | 5 | [math]C_2 \times C_2 \times C_2[/math] | 8(8) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | Uses CFSG | |
9 | 1 | [math]C_9[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
9 | 2 | [math]C_3 \times C_3[/math] |