Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Link to C4)
Line 21: Line 21:
 
! scope="col"| References
 
! scope="col"| References
 
! scope="col"| Notes
 
! scope="col"| Notes
|-
+
|-  
| 1  
+
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
| 1  
+
|-  
| <math>1</math>  
+
| 2 || [[C2|1]] || [[C2|<math>C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
| 1(1)  
+
|-  
| <math>\mathcal{O}</math>
+
| 3 || 1 || <math>C_3</math> || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
| <math>\mathcal{O}</math>
+
|-  
|
+
| 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
|  
+
|-  
 
+
| 4 || 2 || <math>C_2 \times C_2</math> || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
|-
+
|-  
| 2  
+
|5 ||1 ||<math>C_5</math> ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
| [[C2|1]]  
+
|-  
| [[C2|<math>C_2</math>]]  
+
|7 ||1 ||<math>C_7</math> ||14(14) ||No || <math>\mathcal{O}</math> || ||Max 19 classes  
| 1(1)  
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
|  
 
|
 
 
 
|-
 
| 3
 
| 1
 
| <math>C_3</math>
 
| 2(2)
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
|
 
|
 
 
 
|-
 
| 4
 
| 1
 
| <math>C_4</math>
 
| 1(1)
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
|
 
|
 
 
 
|-
 
| 4
 
| 2
 
| <math>C_2 \times C_2</math>  
 
| 3(3)
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
|
 
|
 
 
 
|-
 
|5
 
|1
 
|<math>C_5</math>
 
|6(6)
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
|
 
|
 
 
 
|-
 
|7
 
|1
 
|<math>C_7</math>
 
|14(14)
 
|No
 
| <math>\mathcal{O}</math>
 
|
 
|Max 19 classes  
 
 
|}
 
|}

Revision as of 11:38, 23 August 2018

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Information on broad classes of p-groups can be found here.

We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.

[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.

Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].

Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.

[math]|D|[/math] SmallGroup Isotype Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes Complete (w.r.t.)? Derived equiv classes (w.r.t)? References Notes
1 1 [math]1[/math] 1(1) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
2 1 [math]C_2[/math] 1(1) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
3 1 [math]C_3[/math] 2(2) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
4 1 [math]C_4[/math] 1(1) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
4 2 [math]C_2 \times C_2[/math] 3(3) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
5 1 [math]C_5[/math] 6(6) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
7 1 [math]C_7[/math] 14(14) No [math]\mathcal{O}[/math] Max 19 classes