Difference between revisions of "M(8,5,3)"
(Created page with "{{blockbox |title = M(8,5,3) - <math>k(A_4 \times C_2)</math> |image = |representative = <math>k(A_4 \times C_2)</math> |defect = C2xC2xC2|<math>C_2 \times C_2 \times C_2...") |
(Decomposition and Cartan corrected) |
||
Line 10: | Line 10: | ||
|Pic-k= | |Pic-k= | ||
|cartan = <math>\left( \begin{array}{ccc} | |cartan = <math>\left( \begin{array}{ccc} | ||
− | 2 & | + | 4 & 2 & 2 \\ |
− | + | 2 & 4 & 2 \\ | |
− | + | 2 & 2 & 4 \\ | |
\end{array} \right)</math> | \end{array} \right)</math> | ||
|defect-morita-inv? = Yes | |defect-morita-inv? = Yes | ||
Line 19: | Line 19: | ||
|O-morita = <math>\mathcal{O} (A_4 \times C_2)</math> | |O-morita = <math>\mathcal{O} (A_4 \times C_2)</math> | ||
|decomp = <math>\left( \begin{array}{ccc} | |decomp = <math>\left( \begin{array}{ccc} | ||
+ | 1 & 0 & 0 \\ | ||
1 & 0 & 0 \\ | 1 & 0 & 0 \\ | ||
0 & 1 & 0 \\ | 0 & 1 & 0 \\ | ||
+ | 0 & 1 & 0 \\ | ||
+ | 0 & 0 & 1 \\ | ||
0 & 0 & 1 \\ | 0 & 0 & 1 \\ | ||
+ | 1 & 1 & 1 \\ | ||
1 & 1 & 1 \\ | 1 & 1 & 1 \\ | ||
\end{array}\right)</math> | \end{array}\right)</math> |
Revision as of 15:57, 8 September 2018
M(8,5,3) - [math]k(A_4 \times C_2)[/math]
[[File:|250px]]
Representative: | [math]k(A_4 \times C_2)[/math] |
---|---|
Defect groups: | [math]C_2 \times C_2 \times C_2[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 3 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (A_4 \times C_2)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | {{{PIgroup}}} |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(8,5,2) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | {{{coveringblocks}}} |
[math]p'[/math]-index covered blocks: | {{{coveredblocks}}} |
Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} |
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f: <1,3>, g:<1,1>, h:<2,2>, i:<3,3>
Relations w.r.t. [math]k[/math]: ab=bc=ca=0, df=fe=ed=0, ad=fc, be=da, cf=eb, g^2=h^2=i^2=0, ah=ga, bi=hb, cg=ic, dg=hd, eh=ie, fi=gf
Other notatable representatives
Covering blocks and covered blocks
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.