Difference between revisions of "M(8,5,3)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(8,5,3) - <math>k(A_4 \times C_2)</math> |image = |representative = <math>k(A_4 \times C_2)</math> |defect = C2xC2xC2|<math>C_2 \times C_2 \times C_2...")
 
(Decomposition and Cartan corrected)
Line 10: Line 10:
 
|Pic-k= &nbsp;
 
|Pic-k= &nbsp;
 
|cartan = <math>\left( \begin{array}{ccc}
 
|cartan = <math>\left( \begin{array}{ccc}
2 & 1 & 1 \\
+
4 & 2 & 2 \\
1 & 2 & 1 \\
+
2 & 4 & 2 \\
1 & 1 & 2 \\
+
2 & 2 & 4 \\
 
\end{array} \right)</math>
 
\end{array} \right)</math>
 
|defect-morita-inv? = Yes
 
|defect-morita-inv? = Yes
Line 19: Line 19:
 
|O-morita = <math>\mathcal{O} (A_4 \times C_2)</math>
 
|O-morita = <math>\mathcal{O} (A_4 \times C_2)</math>
 
|decomp = <math>\left( \begin{array}{ccc}
 
|decomp = <math>\left( \begin{array}{ccc}
 +
1 & 0 & 0 \\
 
1 & 0 & 0 \\
 
1 & 0 & 0 \\
 
0 & 1 & 0 \\
 
0 & 1 & 0 \\
 +
0 & 1 & 0 \\
 +
0 & 0 & 1 \\
 
0 & 0 & 1 \\
 
0 & 0 & 1 \\
 +
1 & 1 & 1 \\
 
1 & 1 & 1 \\
 
1 & 1 & 1 \\
 
\end{array}\right)</math>
 
\end{array}\right)</math>

Revision as of 15:57, 8 September 2018

M(8,5,3) - [math]k(A_4 \times C_2)[/math]
[[File:|250px]]
Representative: [math]k(A_4 \times C_2)[/math]
Defect groups: [math]C_2 \times C_2 \times C_2[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 8
[math]l(B)=[/math] 3
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} (A_4 \times C_2)[/math]
Decomposition matrices: [math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]  
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:  
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(8,5,2)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: {{{coveringblocks}}}
[math]p'[/math]-index covered blocks: {{{coveredblocks}}}
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}


Basic algebra

Quiver: a:<1,2>, b:<2,3>, c:<3,1>, d:<2,1>, e:<3,2>, f: <1,3>, g:<1,1>, h:<2,2>, i:<3,3>


Relations w.r.t. [math]k[/math]: ab=bc=ca=0, df=fe=ed=0, ad=fc, be=da, cf=eb, g^2=h^2=i^2=0, ah=ga, bi=hb, cg=ic, dg=hd, eh=ie, fi=gf

Other notatable representatives

Covering blocks and covered blocks

Projective indecomposable modules

Irreducible characters

All irreducible characters have height zero.

Back to [math]C_2 \times C_2 \times C_2[/math]