Difference between revisions of "C4xC2"
(Created page with "== Blocks with defect group <math>C_4 \times C_2</math> == <math>{\rm Aut}(C_4 \times C_2)</math> is an abelian <math>2</math>-group and so every block with this defect group...") |
|||
Line 1: | Line 1: | ||
+ | __NOTITLE__ | ||
+ | |||
== Blocks with defect group <math>C_4 \times C_2</math> == | == Blocks with defect group <math>C_4 \times C_2</math> == | ||
Line 19: | Line 21: | ||
|- | |- | ||
− | | | + | |M(8,2,1) || <math>k(C_4 \times C_2)</math> ||8 ||1 ||<math>1</math> || <math>(C_4 \times C_2):(C_2 \times C_2 \times C_2)</math> || ||1 ||1 || |
|} | |} |
Revision as of 15:07, 8 September 2018
Blocks with defect group [math]C_4 \times C_2[/math]
[math]{\rm Aut}(C_4 \times C_2)[/math] is an abelian [math]2[/math]-group and so every block with this defect group is nilpotent.
There is a unique [math]\mathcal{O}[/math]-Morita equivalence class.
Class | Representative | [math]k(B)[/math] | [math]l(B)[/math] | Inertial quotients | [math]{\rm Pic}_\mathcal{O}(B)[/math] | [math]{\rm Pic}_k(B)[/math] | [math]{\rm mf_\mathcal{O}(B)}[/math] | [math]{\rm mf_k(B)}[/math] | Notes |
---|---|---|---|---|---|---|---|---|---|
M(8,2,1) | [math]k(C_4 \times C_2)[/math] | 8 | 1 | [math]1[/math] | [math](C_4 \times C_2):(C_2 \times C_2 \times C_2)[/math] | 1 | 1 |