Difference between revisions of "Classification by p-group"
| Line 22: | Line 22: | ||
| 1    | | 1    | ||
| 1    | | 1    | ||
| − | | 1    | + | | <math>1</math>   | 
| 1(1)    | | 1(1)    | ||
| <math>\mathcal{O}</math>  | | <math>\mathcal{O}</math>  | ||
| <math>\mathcal{O}</math>  | | <math>\mathcal{O}</math>  | ||
| + | |  | ||
|    | |    | ||
|-  | |-  | ||
| 2    | | 2    | ||
| − | | 1    | + | | [[C2|1]]   | 
| − | | <math>C_2</math>    | + | | [[C2|<math>C_2</math>]]   | 
| 1(1)    | | 1(1)    | ||
| <math>\mathcal{O}</math>  | | <math>\mathcal{O}</math>  | ||
| <math>\mathcal{O}</math>  | | <math>\mathcal{O}</math>  | ||
|    | |    | ||
| + | |  | ||
|-  | |-  | ||
| Line 74: | Line 76: | ||
| <math>\mathcal{O}</math>  | | <math>\mathcal{O}</math>  | ||
| <math>\mathcal{O}</math>  | | <math>\mathcal{O}</math>  | ||
| + | |  | ||
|  | |  | ||
Revision as of 10:00, 17 August 2018
Classification of Morita equivalences for blocks with a given defect group
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
| [math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes | 
|---|---|---|---|---|---|---|---|
| 1 | 1 | [math]1[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 2 | 1 | [math]C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 3 | 1 | [math]C_3[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 4 | 1 | [math]C_4[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 4 | 2 | [math]C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 5 | 1 | [math]C_5[/math] | 6(6) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
| 7 | 1 | [math]C_7[/math] | 14(14) | No | [math]\mathcal{O}[/math] | Max 19 classes |