Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
Line 22: Line 22:
 
| 1  
 
| 1  
 
| 1  
 
| 1  
| 1  
+
| <math>1</math>
 
| 1(1)  
 
| 1(1)  
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 +
|
 
|  
 
|  
  
 
|-
 
|-
 
| 2  
 
| 2  
| 1  
+
| [[C2|1]]
| <math>C_2</math>  
+
| [[C2|<math>C_2</math>]]
 
| 1(1)  
 
| 1(1)  
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
|  
 
|  
 +
|
  
 
|-
 
|-
Line 74: Line 76:
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 
| <math>\mathcal{O}</math>
 +
|
 
|
 
|
  

Revision as of 10:00, 17 August 2018

Classification of Morita equivalences for blocks with a given defect group

We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.

[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.

Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].

Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.

[math]|D|[/math] SmallGroup Isotype Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes Complete (w.r.t.)? Derived equiv classes (w.r.t)? References Notes
1 1 [math]1[/math] 1(1) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
2 1 [math]C_2[/math] 1(1) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
3 1 [math]C_3[/math] 2(2) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
4 1 [math]C_4[/math] 1(1) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
4 2 [math]C_2 \times C_2[/math] 3(3) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
5 1 [math]C_5[/math] 6(6) [math]\mathcal{O}[/math] [math]\mathcal{O}[/math]
7 1 [math]C_7[/math] 14(14) No [math]\mathcal{O}[/math] Max 19 classes