Difference between revisions of "Q8"

From Block library
Jump to: navigation, search
(Created page with "== Blocks with defect group <math>Q_8</math> == These are examples of tame blocks and were first classified over <math>k</math> by Erdmann (see References|[...")
 
Line 18: Line 18:
  
 
|-
 
|-
|[[M(8,4,1)]] || <math>k(Q_8)</math> ||5 ||1 ||<math>1</math> || || ||1 ||1 ||
+
|[[M(8,4,1)]] || <math>kQ_8</math> ||5 ||1 ||<math>1</math> || || ||1 ||1 ||
 
|-
 
|-
 
|[[M(8,4,2)]] || <math>B_0(kSL_2(5))</math> ||5 ||3 ||<math>1</math> || || || ||1 || <math>Q(3 {\cal A})_2</math>
 
|[[M(8,4,2)]] || <math>B_0(kSL_2(5))</math> ||5 ||3 ||<math>1</math> || || || ||1 || <math>Q(3 {\cal A})_2</math>
 
|-
 
|-
|[[M(8,4,3)]] || <math>kSL_2(3)</math> ||5 ||3 ||<math>1</math> || || ||1 ||1 || <math>D(3 {\cal K})</math>
+
|[[M(8,4,3)]] || <math>kSL_2(3)</math> ||5 ||3 ||<math>1</math> || || ||1 ||1 || <math>Q(3 {\cal K})</math>
 
|}
 
|}
  
 
[[M(8,4,2)]] and [[M(8,4,3)]] are derived equivalent over <math>k</math> by [[References|[Ho97] ]].
 
[[M(8,4,2)]] and [[M(8,4,3)]] are derived equivalent over <math>k</math> by [[References|[Ho97] ]].

Revision as of 20:14, 31 August 2018

Blocks with defect group [math]Q_8[/math]

These are examples of tame blocks and were first classified over [math]k[/math] by Erdmann (see [Er87] ). The classification with respect to [math]\mathcal{O}[/math] is still unknown in general, except for the cases M(8,4,1) and M(8,4,3), which both lift to unique Morita equivalence classes over [math]\mathcal{O}[/math] by [HKL07] and the theory of nilpotent blocks.


Class Representative [math]k(B)[/math] [math]l(B)[/math] Inertial quotients [math]{\rm Pic}_\mathcal{O}(B)[/math] [math]{\rm Pic}_k(B)[/math] [math]{\rm mf_\mathcal{O}(B)}[/math] [math]{\rm mf_k(B)}[/math] Notes
M(8,4,1) [math]kQ_8[/math] 5 1 [math]1[/math] 1 1
M(8,4,2) [math]B_0(kSL_2(5))[/math] 5 3 [math]1[/math] 1 [math]Q(3 {\cal A})_2[/math]
M(8,4,3) [math]kSL_2(3)[/math] 5 3 [math]1[/math] 1 1 [math]Q(3 {\cal K})[/math]

M(8,4,2) and M(8,4,3) are derived equivalent over [math]k[/math] by [Ho97] .