Difference between revisions of "Classification by p-group"
m |
(Merged some tables) |
||
Line 31: | Line 31: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
− | | <strong> | + | | <strong><math>2 \leq |D| \leq 8</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
Line 43: | Line 43: | ||
|- | |- | ||
| 2 || [[C2|1]] || [[C2|<math>C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | | 2 || [[C2|1]] || [[C2|<math>C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | | 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
|- | |- | ||
| 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Er82], [Li94] ]] || | | 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Er82], [Li94] ]] || | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
|8 || [[C8|1]] || [[C8|<math>C_8</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |8 || [[C8|1]] || [[C8|<math>C_8</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
Line 86: | Line 60: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
− | | <strong> | + | | <strong><math>|D|=16</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
Line 129: | Line 103: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
− | | <strong> | + | | <strong><math>3 \leq |D| \leq 9</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
Line 141: | Line 115: | ||
|- | |- | ||
| 3 || [[C3|1]] || [[C3|<math>C_3</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | | 3 || [[C3|1]] || [[C3|<math>C_3</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
|9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
Line 163: | Line 125: | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
− | | <strong> | + | | <strong><math>5 \leq |D| \leq 25</math> </strong> |
|- | |- | ||
! scope="col"| <math>|D|</math> | ! scope="col"| <math>|D|</math> | ||
Line 175: | Line 137: | ||
|- | |- | ||
|5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | |5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
|25 || [[C25|1]] ||[[C25|<math>C_{25}</math>]] || 6(6) || No || <math>\mathcal{O}</math> || || Max 12 classes | |25 || [[C25|1]] ||[[C25|<math>C_{25}</math>]] || 6(6) || No || <math>\mathcal{O}</math> || || Max 12 classes |
Revision as of 16:11, 31 August 2018
Classification of Morita equivalences for blocks with a given defect group
On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
Contents
Blocks of defect zero
Defect group of size [math]1[/math] | |||||||
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
1 | 1 | [math]1[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] |
Blocks for [math] p=2 [/math]
[math]2 \leq |D| \leq 8[/math] | |||||||
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
2 | 1 | [math]C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 1 | [math]C_4[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
4 | 2 | [math]C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Er82], [Li94] | |
8 | 1 | [math]C_8[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 2 | [math]C_4 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
8 | 3 | [math]D_8[/math] | 6(?) | [math]k[/math] | [Er87] | ||
8 | 4 | [math]Q_8[/math] | [math]k[/math] | ||||
8 | 5 | [math]C_2 \times C_2 \times C_2[/math] | 8(8) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Ea16] | Uses CFSG |
[math]|D|=16[/math] | |||||||
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
16 | 1 | [math]C_{16}[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
16 | 2 | [math]C_4 \times C_4[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [EKKS14] | |
16 | 3 | SmallGroup(16,3) | [Sa11] | Block invariants known | |||
16 | 4 | [math]C_4:C_4[/math] | [Sa12] | Block invariants known | |||
16 | 5 | [math]C_8 \times C_2[/math] | 1(1) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
16 | 6 | [math]M_{16}[/math] | [Sa12b] | Block invariants known | |||
16 | 7 | [math]D_{16}[/math] | |||||
16 | 8 | [math]SD_{16}[/math] | |||||
16 | 9 | [math]Q_{16}[/math] | |||||
16 | 10 | [math]C_4 \times C_2 \times C_2[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [EL18a] | |
16 | 11 | [math]D_8 \times C_2[/math] | [Sa12] | Block invariants known | |||
16 | 12 | [math]Q_8 \times C_2[/math] | [Sa13] | Block invariants known | |||
16 | 13 | [math]D_8*C_4[/math] | [Sa13b] | Block invariants known | |||
16 | 14 | [math](C_2)^4[/math] | 16(16) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | [Ea18] |
Blocks for [math]p=3[/math]
[math]3 \leq |D| \leq 9[/math] | |||||||
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
3 | 1 | [math]C_3[/math] | 2(2) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
9 | 1 | [math]C_9[/math] | 3(3) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
9 | 2 | [math]C_3 \times C_3[/math] |
Blocks for [math]p=5[/math]
[math]5 \leq |D| \leq 25[/math] | |||||||
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
5 | 1 | [math]C_5[/math] | 6(6) | [math]\mathcal{O}[/math] | [math]\mathcal{O}[/math] | ||
25 | 1 | [math]C_{25}[/math] | 6(6) | No | [math]\mathcal{O}[/math] | Max 12 classes | |
25 | 2 | [math]C_5 \times C_5[/math] |
Blocks for [math]p\geq 7[/math]
[math]|D|[/math] | SmallGroup | Isotype | Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes | Complete (w.r.t.)? | Derived equiv classes (w.r.t)? | References | Notes |
---|---|---|---|---|---|---|---|
7 | 1 | [math]C_7[/math] | 14(14) | No | [math]\mathcal{O}[/math] | Max 19 classes | |
11 | 1 | [math]C_{11}[/math] | No | [math]\mathcal{O}[/math] | |||
13 | 1 | [math]C_{13}[/math] | No | [math]\mathcal{O}[/math] | |||
17 | 1 | [math]C_{17}[/math] | No | [math]\mathcal{O}[/math] | |||
19 | 1 | [math]C_{19}[/math] | No | [math]\mathcal{O}[/math] | |||
23 | 1 | [math]C_{23}[/math] | No | [math]\mathcal{O}[/math] |