Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
m
(Merged some tables)
Line 31: Line 31:
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
| <strong>Defect group of size <math>2</math> &nbsp;</strong>
+
| <strong><math>2 \leq |D| \leq 8</math> &nbsp;</strong>
 
|-
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| <math>|D|</math>
Line 43: Line 43:
 
|-  
 
|-  
 
| 2 || [[C2|1]] || [[C2|<math>C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
| 2 || [[C2|1]] || [[C2|<math>C_2</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
|}
 
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>4</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
 
|-  
 
|-  
 
| 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
| 4 || [[C4|1]] || [[C4|<math>C_4</math>]] || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|-  
 
|-  
 
| 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Er82], [Li94] ]] ||
 
| 4 || [[C2xC2|2]] || [[C2xC2|<math>C_2 \times C_2</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References|[Er82], [Li94] ]] ||
|}
 
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>8</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
 
|-  
 
|-  
 
|8 || [[C8|1]] || [[C8|<math>C_8</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|8 || [[C8|1]] || [[C8|<math>C_8</math>]] ||1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
Line 86: Line 60:
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
| <strong>Defect group of size <math>16</math> &nbsp;</strong>
+
| <strong><math>|D|=16</math> &nbsp;</strong>
 
|-
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| <math>|D|</math>
Line 129: Line 103:
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
| <strong>Defect group of size <math>3</math> &nbsp;</strong>
+
| <strong><math>3 \leq |D| \leq 9</math> &nbsp;</strong>
 
|-
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| <math>|D|</math>
Line 141: Line 115:
 
|-  
 
|-  
 
| 3 || [[C3|1]] || [[C3|<math>C_3</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
| 3 || [[C3|1]] || [[C3|<math>C_3</math>]] || 2(2) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
|}
 
  
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>9</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
 
|-  
 
|-  
 
|9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||  
 
|9 || [[C9|1]] ||[[C9|<math>C_9</math>]] || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||  
Line 163: Line 125:
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
| <strong>Defect group of size <math>5</math> &nbsp;</strong>
+
| <strong><math>5 \leq |D| \leq 25</math> &nbsp;</strong>
 
|-
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| <math>|D|</math>
Line 175: Line 137:
 
|-  
 
|-  
 
|5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|5 || [[C5|1]] || [[C5|<math>C_5</math>]] ||6(6) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
|}
 
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>25</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
 
|-  
 
|-  
 
|25 || [[C25|1]] ||[[C25|<math>C_{25}</math>]] || 6(6) || No || <math>\mathcal{O}</math> || || Max 12 classes  
 
|25 || [[C25|1]] ||[[C25|<math>C_{25}</math>]] || 6(6) || No || <math>\mathcal{O}</math> || || Max 12 classes  

Revision as of 16:11, 31 August 2018

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.

[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.

Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].

Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.

Blocks of defect zero

Blocks for [math] p=2 [/math]

Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]