Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Blocks for p=2)
(Blocks for p=2)
 
(One intermediate revision by one other user not shown)
Line 219: Line 219:
 
|64 || [[SmallGroup(64,3)|3]] || [[SmallGroup(64,3)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_8:C_8</math>
 
|64 || [[SmallGroup(64,3)|3]] || [[SmallGroup(64,3)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_8:C_8</math>
 
|-
 
|-
|64 || [[(C2xC2xC2):C8|4]] || [[(C2xC2xC2):C8|<math>(C_2)^3:C_8</math>]] || No || || || || ||
+
|64 || [[(C2xC2xC2):C8|4]] || [[(C2xC2xC2):C8|<math>(C_2)^3:C_8</math>]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,5)|5]] || [[SmallGroup(64,5)]] || No || || || || ||
+
|64 || [[SmallGroup(64,5)|5]] || [[SmallGroup(64,5)]] || No || || || || || FT
 
|-
 
|-
|64 || [[(D8:C8|6]] || [[D8:C8|<math>D_8:C_8</math>]] || No || || || || ||
+
|64 || [[(D8:C8|6]] || [[D8:C8|<math>D_8:C_8</math>]] || No || || || || || FT
 
|-
 
|-
 
|64 || [[(Q8:C8|7]] || [[Q8:C8|<math>Q_8:C_8</math>]] || No || || || || ||
 
|64 || [[(Q8:C8|7]] || [[Q8:C8|<math>Q_8:C_8</math>]] || No || || || || ||
Line 231: Line 231:
 
|64 || [[SmallGroup(64,9)|9]] || [[SmallGroup(64,9)]] || No || || || || ||
 
|64 || [[SmallGroup(64,9)|9]] || [[SmallGroup(64,9)]] || No || || || || ||
 
|-
 
|-
|64 || [[SmallGroup(64,10)|10]] || [[SmallGroup(64,10)]] || No || || || || ||
+
|64 || [[SmallGroup(64,10)|10]] || [[SmallGroup(64,10)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,11)|11]] || [[SmallGroup(64,11)]] || No || || || || ||
+
|64 || [[SmallGroup(64,11)|11]] || [[SmallGroup(64,11)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,12)|12]] || [[SmallGroup(64,12)]] || No || || || || ||
+
|64 || [[SmallGroup(64,12)|12]] || [[SmallGroup(64,12)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,13)|13]] || [[SmallGroup(64,13)]] || No || || || || ||
+
|64 || [[SmallGroup(64,13)|13]] || [[SmallGroup(64,13)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,14)|14]] || [[SmallGroup(64,14)]] || No || || || || ||
+
|64 || [[SmallGroup(64,14)|14]] || [[SmallGroup(64,14)]] || No || || || || || FT
 
|-
 
|-
 
|64 || [[SmallGroup(64,15)|15]] || [[SmallGroup(64,15)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_8:C_8</math>
 
|64 || [[SmallGroup(64,15)|15]] || [[SmallGroup(64,15)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_8:C_8</math>
Line 245: Line 245:
 
|64 || [[SmallGroup(64,16)|16]] || [[SmallGroup(64,16)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_8:C_8</math>
 
|64 || [[SmallGroup(64,16)|16]] || [[SmallGroup(64,16)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_8:C_8</math>
 
|-
 
|-
|64 || [[SmallGroup(64,17)|17]] || [[SmallGroup(64,17)]] || No || || || || ||
+
|64 || [[SmallGroup(64,17)|17]] || [[SmallGroup(64,17)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,18)|18]] || [[SmallGroup(64,18)]] || No || || || || || <math>(C_4 \times C_4):C_4</math>
+
|64 || [[SmallGroup(64,18)|18]] || [[SmallGroup(64,18)]] || No || || || || || <math>(C_4 \times C_4):C_4</math> FT
 
|-
 
|-
|64 || [[SmallGroup(64,19)|19]] || [[SmallGroup(64,19)]] || No || || || || ||
+
|64 || [[SmallGroup(64,19)|19]] || [[SmallGroup(64,19)]] || No || || || || || Maxperm
 
|-
 
|-
 
|64 || [[SmallGroup(64,20)|20]] || [[SmallGroup(64,20)]] || No || || || || || <math>(C_4 \times C_4):C_4</math>
 
|64 || [[SmallGroup(64,20)|20]] || [[SmallGroup(64,20)]] || No || || || || || <math>(C_4 \times C_4):C_4</math>
 
|-
 
|-
|64 || [[SmallGroup(64,21)|21]] || [[SmallGroup(64,21)]] || No || || || || ||
+
|64 || [[SmallGroup(64,21)|21]] || [[SmallGroup(64,21)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,22)|22]] || [[SmallGroup(64,22)]] || No || || || || ||
+
|64 || [[SmallGroup(64,22)|22]] || [[SmallGroup(64,22)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,23)|23]] || [[SmallGroup(64,23)]] || No || || || || ||
+
|64 || [[SmallGroup(64,23)|23]] || [[SmallGroup(64,23)]] || No || || || || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,24)|24]] || [[SmallGroup(64,24)]] || No || || || || || <math>M_{16}:C_4</math>
+
|64 || [[SmallGroup(64,24)|24]] || [[SmallGroup(64,24)]] || No || || || || || <math>M_{16}:C_4</math> FT
 
|-
 
|-
|64 || [[SmallGroup(64,25)|25]] || [[SmallGroup(64,25)]] || No || || || || || <math>M_{16}:C_4</math>
+
|64 || [[SmallGroup(64,25)|25]] || [[SmallGroup(64,25)]] || No || || || || || <math>M_{16}:C_4</math> FT
 
|-
 
|-
|64 || [[C16xC4|26]] || [[C16xC4|<math>C_{16} \times C_4</math>]]|| <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
+
|64 || [[C16xC4|26]] || [[C16xC4|<math>C_{16} \times C_4</math>]]|| <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || || FT
 
|-
 
|-
|64 || [[SmallGroup(64,27)|27]] || [[SmallGroup(64,27)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_{16}:C_4</math>
+
|64 || [[SmallGroup(64,27)|27]] || [[SmallGroup(64,27)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_{16}:C_4</math> FT
 
|-
 
|-
|64 || [[SmallGroup(64,28)|28]] || [[SmallGroup(64,28)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_{16}:C_4</math>
+
|64 || [[SmallGroup(64,28)|28]] || [[SmallGroup(64,28)]] || <math>\mathcal{O}</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#C|[CG12], [Sa12b]]] || <math>C_{16}:C_4</math> FT
 
|-
 
|-
 
|64 || [[(C2xC2):C16|29]] || [[(C2xC2):C16|<math>(C_2)^2:C_{16}</math>]] || No || || || || ||
 
|64 || [[(C2xC2):C16|29]] || [[(C2xC2):C16|<math>(C_2)^2:C_{16}</math>]] || No || || || || ||
 
|-
 
|-
|64 || [[SmallGroup(64,30)|30]] || [[SmallGroup(64,30)]] || No || || || || || <math>M_{32}:C_2</math>
+
|64 || [[SmallGroup(64,30)|30]] || [[SmallGroup(64,30)]] || No || || || || || <math>M_{32}:C_2</math> FT
 
|-
 
|-
|64 || [[SmallGroup(64,31)|31]] || [[SmallGroup(64,31)]] || No || || || || || <math>M_{32}:C_2</math>
+
|64 || [[SmallGroup(64,31)|31]] || [[SmallGroup(64,31)]] || No || || || || || <math>M_{32}:C_2</math>  
 
|-
 
|-
|64 || [[C2wrC4|32]] || [[(C2wrC4|<math>C_2 \wr C_4</math>]] || No || || || || ||
+
|64 || [[C2wrC4|32]] || [[(C2wrC4|<math>C_2 \wr C_4</math>]] || No || || || || ||  
 
|-
 
|-
|64 || [[SmallGroup(64,33)|33]] || [[SmallGroup(64,33)]] || No || || || || ||  
+
|64 || [[SmallGroup(64,33)|33]] || [[SmallGroup(64,33)]] || No || || || || || FT
 
|-
 
|-
 
|64 || [[SmallGroup(64,34)|34]] || [[SmallGroup(64,31)]] || No || || || || ||  <math>(C_4 \times C_4):C_4</math>
 
|64 || [[SmallGroup(64,34)|34]] || [[SmallGroup(64,31)]] || No || || || || ||  <math>(C_4 \times C_4):C_4</math>
Line 441: Line 441:
 
|64 || [[SmallGroup(64,114)|114]] || [[SmallGroup(64,114)]] || No || || || || ||
 
|64 || [[SmallGroup(64,114)|114]] || [[SmallGroup(64,114)]] || No || || || || ||
 
|-
 
|-
|64 || [[D8xC8|115]] || [[D8xC8|<math>(D_8 \times C_8</math>]]|| No || || || || ||
+
|64 || [[D8xC8|115]] || [[D8xC8|<math>D_8 \times C_8</math>]]|| No || || || || ||
 
|-
 
|-
 
|64 || [[SmallGroup(64,116)|116]] || [[SmallGroup(64,116)]] || No || || || || ||
 
|64 || [[SmallGroup(64,116)|116]] || [[SmallGroup(64,116)]] || No || || || || ||
Line 447: Line 447:
 
|64 || [[SmallGroup(64,117)|117]] || [[SmallGroup(64,117)]] || No || || || || ||
 
|64 || [[SmallGroup(64,117)|117]] || [[SmallGroup(64,117)]] || No || || || || ||
 
|-
 
|-
|64 || [[D16xC4|118]] || [[D16xC4|<math>(D_{16} \times C_4</math>]]|| No || || || || ||
+
|64 || [[D16xC4|118]] || [[D16xC4|<math>D_{16} \times C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[SD16xC4|119]] || [[SD16xC4|<math>(SD_{16} \times C_4</math>]]|| No || || || || ||
+
|64 || [[SD16xC4|119]] || [[SD16xC4|<math>SD_{16} \times C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[Q16xC4|120]] || [[Q16xC4|<math>(Q_{16} \times C_4</math>]]|| No || || || || ||
+
|64 || [[Q16xC4|120]] || [[Q16xC4|<math>Q_{16} \times C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[SD16:C4|121]] || [[SD16:C4|<math>(SD_{16}:C_4</math>]]|| No || || || || || Fusion trivial?
+
|64 || [[SD16:C4|121]] || [[SD16:C4|<math>SD_{16}:C_4</math>]]|| No || || || || || Fusion trivial?
 
|-
 
|-
|64 || [[Q16:C4|122]] || [[Q16:C4|<math>(Q_{16}:C_4</math>]]|| No || || || || ||
+
|64 || [[Q16:C4|122]] || [[Q16:C4|<math>Q_{16}:C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[D16:C4|123]] || [[D16:C4|<math>(D_{16}:C_4</math>]]|| No || || || || ||
+
|64 || [[D16:C4|123]] || [[D16:C4|<math>D_{16}:C_4</math>]]|| No || || || || ||
 
|-
 
|-
 
|64 || [[SmallGroup(64,124)|124]] || [[SmallGroup(64,124)]] || No || || || || ||
 
|64 || [[SmallGroup(64,124)|124]] || [[SmallGroup(64,124)]] || No || || || || ||
Line 463: Line 463:
 
|64 || [[SmallGroup(64,125)|125]] || [[SmallGroup(64,125)]] || No || || || || ||
 
|64 || [[SmallGroup(64,125)|125]] || [[SmallGroup(64,125)]] || No || || || || ||
 
|-
 
|-
|64 || [[Q8xC8|126]] || [[Q8xC8|<math>(Q_{8} \times C_8</math>]]|| <math>\mathcal{O}</math> || 3(3) || || || [[References#E|[EL20]]] || Invariants known by [[References#S|[Sa14,9.28]]]
+
|64 || [[Q8xC8|126]] || [[Q8xC8|<math>Q_{8} \times C_8</math>]]|| <math>\mathcal{O}</math> || 3(3) || || || [[References#E|[EL20]]] || Invariants known by [[References#S|[Sa14,9.28]]]
 
|-
 
|-
 
|64 || [[SmallGroup(64,127)|127]] || [[SmallGroup(64,127)]] || No || || || || ||
 
|64 || [[SmallGroup(64,127)|127]] || [[SmallGroup(64,127)]] || No || || || || ||
Line 472: Line 472:
 
|-
 
|-
 
|64 || [[D8:D8|130]] || [[D8:D8|<math>D_8:D_{8}</math>]]|| No || || || || ||
 
|64 || [[D8:D8|130]] || [[D8:D8|<math>D_8:D_{8}</math>]]|| No || || || || ||
 +
|-
 +
|64 || [[Q8xQ8|239]] || [[Q8xQ8|<math>Q_{8} \times Q_8</math>]]|| <math>\mathcal{O}</math> || || || || [[References#E|[EL20]]] ||
 
|-
 
|-
 
|64 || [[SmallGroup(64,245)|245]] || [[SmallGroup(64,245)]] || <math>\mathcal{O}</math> || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#E|[Ea24]]] || Sylow 2-subgroup of <math>PSU_3(4)</math>
 
|64 || [[SmallGroup(64,245)|245]] || [[SmallGroup(64,245)]] || <math>\mathcal{O}</math> || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#E|[Ea24]]] || Sylow 2-subgroup of <math>PSU_3(4)</math>

Latest revision as of 12:50, 9 September 2025

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks for [math] p=2 [/math]

The table for defect groups of order 32 takes as its starting point Table 13.1 of Sambale's book [Sa14].


Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]