Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Blocks for p=2: Added [KoLa20b] ref for Q16)
(Blocks for p=2: Updated number of classes for SD_{16})
Line 65: Line 65:
 
|16 || [[D16|7]] || [[D16|<math>D_{16}</math>]] || <math>k</math>|| 5(?) || <math>k</math> || <math>k</math> || [[References|[Er87]]] || Principal blocks classified up to source algebra equivalence in [[References#K|[KoLa20]]]  
 
|16 || [[D16|7]] || [[D16|<math>D_{16}</math>]] || <math>k</math>|| 5(?) || <math>k</math> || <math>k</math> || [[References|[Er87]]] || Principal blocks classified up to source algebra equivalence in [[References#K|[KoLa20]]]  
 
|-
 
|-
|16 || [[SD16|8]] || [[SD16|<math>SD_{16}</math>]] || <math>k</math> || 8(?) || || || [[References|[Er88c], [Er90b]]] || Two other possible classes
+
|16 || [[SD16|8]] || [[SD16|<math>SD_{16}</math>]] || <math>k</math> || 7(?) || || || [[References|[Er88c], [Er90b]]] || Two other possible classes
 
|-
 
|-
 
|16 || [[Q16|9]] || [[Q16|<math>Q_{16}</math>]] || No || 6(?) || || <math>k</math> || [[References|[Er88a], [Er88b], [Ho97]]] || Two possibly infinite families when <math>l(B)=2</math>. Classified over <math>\mathcal{O}</math> when <math>l(B)=3</math> in [[References#E|[Ei16]]]. Principal blocks classified up to source algebra equivalence in [[References#K|[KoLa20b]]]
 
|16 || [[Q16|9]] || [[Q16|<math>Q_{16}</math>]] || No || 6(?) || || <math>k</math> || [[References|[Er88a], [Er88b], [Ho97]]] || Two possibly infinite families when <math>l(B)=2</math>. Classified over <math>\mathcal{O}</math> when <math>l(B)=3</math> in [[References#E|[Ei16]]]. Principal blocks classified up to source algebra equivalence in [[References#K|[KoLa20b]]]

Revision as of 13:21, 4 August 2022

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks for [math] p=2 [/math]

The table for defect groups of order 32 takes as its starting point Table 13.1 of Sambale's book [Sa14].


Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]