Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Blocks for p=11)
Line 11: Line 11:
 
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
 
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
  
 +
== Blocks of defect zero ==
  
== Blocks for <math> p=2 </math> ==
 
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>1</math> &nbsp;</strong>
 
| <strong>Defect group of size <math>1</math> &nbsp;</strong>
Line 27: Line 27:
 
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||  
 
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||  
 
|}
 
|}
 +
 +
== Blocks for <math> p=2 </math> ==
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
Line 125: Line 127:
  
 
==Blocks for <math>p=3</math>==
 
==Blocks for <math>p=3</math>==
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>1</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
|-
 
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|}
 
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
Line 173: Line 161:
  
 
==Blocks for <math>p=5</math>==
 
==Blocks for <math>p=5</math>==
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>1</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
|-
 
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|}
 
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
Line 220: Line 194:
 
|}
 
|}
  
==Blocks for <math>p=7</math>==
+
==Blocks for <math>p\geq 7</math>==
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>1</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
|-
 
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|}
 
  
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
| <strong>Defect group of size <math>7</math> &nbsp;</strong>
 
 
|-
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| <math>|D|</math>
Line 249: Line 208:
 
|-  
 
|-  
 
|7 || [[C7|1]] || [[C7|<math>C_7</math>]] ||14(14) ||No || <math>\mathcal{O}</math> || ||Max 19 classes  
 
|7 || [[C7|1]] || [[C7|<math>C_7</math>]] ||14(14) ||No || <math>\mathcal{O}</math> || ||Max 19 classes  
|}
 
 
==Blocks for <math>p=11</math>==
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>1</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
|-
 
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
|}
 
 
{| role="presentation" class="wikitable mw-collapsible mw-collapsed"
 
| <strong>Defect group of size <math>11</math> &nbsp;</strong>
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
 
|-  
 
|-  
 
|11|| [[C11|1]] || [[C11|<math>C_{11}</math>]] || ||No || <math>\mathcal{O}</math> || ||
 
|11|| [[C11|1]] || [[C11|<math>C_{11}</math>]] || ||No || <math>\mathcal{O}</math> || ||
|}
 
 
==Blocks for <math>p\geq 13</math>==
 
 
{| class="wikitable"
 
|-
 
! scope="col"| <math>|D|</math>
 
! scope="col"| SmallGroup
 
! scope="col"| Isotype
 
! scope="col"| Known <math>k</math>-(<math>\mathcal{O}</math>-)classes
 
! scope="col"| Complete (w.r.t.)?
 
! scope="col"| Derived equiv classes (w.r.t)?
 
! scope="col"| References
 
! scope="col"| Notes
 
|-
 
| 1 || 1 || <math>1</math> || 1(1) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || ||
 
 
|-  
 
|-  
 
|13 || [[C13|1]] || [[C13|<math>C_{13}</math>]] || ||No || <math>\mathcal{O}</math> || ||
 
|13 || [[C13|1]] || [[C13|<math>C_{13}</math>]] || ||No || <math>\mathcal{O}</math> || ||

Revision as of 07:47, 29 August 2018

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Information on broad classes of p-groups can be found here.

We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.

[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.

Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].

Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.

Blocks of defect zero

Blocks for [math] p=2 [/math]

Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]