|
|
Line 268: |
Line 268: |
| | | |
| {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" |
− | | <strong>Defect group of size <math>7</math> </strong> | + | | <strong>Defect group of size <math>11</math> </strong> |
| |- | | |- |
| ! scope="col"| <math>|D|</math> | | ! scope="col"| <math>|D|</math> |
Revision as of 16:57, 28 August 2018
Classification of Morita equivalences for blocks with a given defect group
On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Information on broad classes of p-groups can be found here.
We use the following notation for Morita equivalence classes of blocks of finite groups with respect to an algebraically closed field k.
[math]M(x,y,z)[/math] is a class consisting of blocks with defect groups of order x, with a representative having defect group SmallGroup(x,y) in GAP/MAGMA labelling. It is the z-th such class.
Note that it is not known that the isomorphism class of a defect group is a Morita invariant, so it could be that [math]M(x,y1,z1)=M(x,y2,z2)[/math] for some [math](y1,z1) \neq (y2,z2)[/math].
Also, at present there is no known example of a k-Morita equivalence class of blocks which splits into more than one Morita equivalence class with respect to a complete discrete valuation ring. If such an example arises, then we will bring in more notation for classes with respect to the d.v.r.
Blocks for [math] p=2 [/math]
Defect group of size [math]1[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
1 |
1 |
[math]1[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]2[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
2 |
1 |
[math]C_2[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]4[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
4 |
1 |
[math]C_4[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
4 |
2 |
[math]C_2 \times C_2[/math] |
3(3) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
[Er82], [Li94] |
|
Blocks for [math]p=3[/math]
Defect group of size [math]1[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
1 |
1 |
[math]1[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]3[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
3 |
1 |
[math]C_3[/math] |
2(2) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]9[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
9 |
1 |
[math]C_9[/math] |
3(3) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
9 |
2 |
[math]C_3 \times C_3[/math] |
|
|
|
|
|
Blocks for [math]p=5[/math]
Defect group of size [math]1[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
1 |
1 |
[math]1[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]5[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
5 |
1 |
[math]C_5[/math] |
6(6) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]25[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
25 |
1 |
[math]C_{25}[/math] |
5(5) |
No |
[math]\mathcal{O}[/math] |
|
Max 12 classes
|
25 |
2 |
[math]C_5 \times C_5[/math] |
|
|
|
|
|
Blocks for [math]p=7[/math]
Defect group of size [math]1[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
1 |
1 |
[math]1[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]7[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
7 |
1 |
[math]C_7[/math] |
14(14) |
No |
[math]\mathcal{O}[/math] |
|
Max 19 classes
|
Blocks for [math]p=11[/math]
Defect group of size [math]1[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
1 |
1 |
[math]1[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
Defect group of size [math]11[/math]
|
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
11 |
1 |
[math]C_{11}[/math] |
|
No |
[math]\mathcal{O}[/math] |
|
|
Blocks for [math]p\geq 13[/math]
[math]|D|[/math]
|
SmallGroup
|
Isotype
|
Known [math]k[/math]-([math]\mathcal{O}[/math]-)classes
|
Complete (w.r.t.)?
|
Derived equiv classes (w.r.t)?
|
References
|
Notes
|
1 |
1 |
[math]1[/math] |
1(1) |
[math]\mathcal{O}[/math] |
[math]\mathcal{O}[/math] |
|
|
13 |
1 |
[math]C_{13}[/math] |
|
No |
[math]\mathcal{O}[/math] |
|
|
17 |
1 |
[math]C_{17}[/math] |
|
No |
[math]\mathcal{O}[/math] |
|
|
19 |
1 |
[math]C_{19}[/math] |
|
No |
[math]\mathcal{O}[/math] |
|
|
23 |
1 |
[math]C_{23}[/math] |
|
No |
[math]\mathcal{O}[/math] |
|
|