# M(16,14,1)

Revision as of 15:42, 28 November 2019 by CesareGArdito (talk | contribs)

M(16,14,1) - [math]k((C_2)^4)[/math]

[[File: |250px]]

Representative: | [math]k((C_2)^4)[/math] |
---|---|

Defect groups: | [math](C_2)^4[/math] |

Inertial quotients: | [math]1[/math] |

[math]k(B)=[/math] | 16 |

[math]l(B)=[/math] | 1 |

[math]{\rm mf}_k(B)=[/math] | 1 |

[math]{\rm Pic}_k(B)=[/math] | |

Cartan matrix: | [math]\left( \begin{array}{c} 16 \end{array} \right)[/math] |

Defect group Morita invariant? | Yes |

Inertial quotient Morita invariant? | Yes |

[math]\mathcal{O}[/math]-Morita classes known? | Yes |

[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} ((C_2)^4)[/math] |

Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array}\right)[/math] |

[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |

[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math](C_2)^4:GL_4(2)[/math] |

[math]PI(B)=[/math] | |

Source algebras known? | No |

Source algebra reps: | |

[math]k[/math]-derived equiv. classes known? | Yes |

[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |

[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |

[math]p'[/math]-index covering blocks: | |

[math]p'[/math]-index covered blocks: | |

Index [math]p[/math] covering blocks: |

These are nilpotent blocks.

## Contents

## Basic algebra

## Other notatable representatives

## Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(16,14,1), then [math]B[/math] is in M(16,14,1), M(16,14,3), M(16,14,4), M(16,14,5), M(16,14,6), M(16,14,8), M(16,14,11),M(16,14,13) or M(16,14,16).

## Projective indecomposable modules

Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:

[math]\begin{array}{c} S_1 \\ S_1 S_1 S_1 S_1 \\ S_1 S_1 S_1 S_1 S_1 S_1 \\ S_1 S_1 S_1 S_1 \\ S_1 \\ \end{array} [/math]

## Irreducible characters

All irreducible characters have height zero.