M(9,2,1)
M(9,2,1) - [math]k(C_3 \times C_3)[/math]
Representative: | [math]k(C_3 \times C_3)[/math] |
---|---|
Defect groups: | [math]C_3 \times C_3[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 9 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 9 \\ \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_3 \times C_3)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math]\mathcal{L}(B)=(C_3 \times C_3):GL_2(3)[/math] |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | M(9,2,2), M(9,2,3) (complete) |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: | M(27,2,1), M(27,5,1) |
These are nilpotent blocks.
Contents
Basic algebra
Quiver: a:<1,1>, b:<1,1>
Relations w.r.t. [math]k[/math]: a^3=b^3=ab-ba=0
Other notatable representatives
Covering blocks and covered blocks
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{ccccc} & & 1 & & \\ & 1 & & 1 & \\ 1 & & 1 & & 1 \\ & 1 & & 1 & \\ & & 1 & & \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.