M(16,14,14)

From Block library
Revision as of 14:18, 28 November 2019 by CesareGArdito (talk | contribs) (Created page with "{{blockbox |title = M(16,14,14) - <math>B_0(k(C_2 \times J_1))</math> |image =   |representative = <math>B_0(k(C_2 \times J_1))</math> |defect = (C2)%5E4|<math>(C_2)...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
M(16,14,14) - [math]B_0(k(C_2 \times J_1))[/math]
[[File: |250px]]
Representative: [math]B_0(k(C_2 \times J_1))[/math]
Defect groups: [math](C_2)^4[/math]
Inertial quotients: [math]C_7:C_3[/math]
[math]k(B)=[/math] 16
[math]l(B)=[/math] 5
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{ccccc} 16 & 8 & 8 & 8 & 8 \\ 8 & 8 & 6 & 6 & 2 \\ 8 & 6 & 8 & 4 & 4 \\ 8 & 6 & 4 & 8 & 4 \\ 8 & 2 & 4 & 4 & 8 \end{array}\right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}(C_2 \times J_1))[/math]
Decomposition matrices: [math]\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(16,14,13), M(16,14,15)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(16,14,14), then [math]B[/math] is also in M(16,14,14).

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3, S_4, S_5[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccccc} \begin{array}{c} S_1 \\ S_1 S_3 S_4 S_5 \\ S_1 S_1 S_1 S_2 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_1 S_2 S_2 S_3 S_3 S_4 S_4 S_5 S_5 \\ S_1 S_1 S_1 S_2 S_2 S_3 S_3 S_4 S_4 S_5 S_5 \\ S_1 S_1 S_1 S_2 S_2 S_3 S_4 S_5 \\ S_1 S_3 S_4 S_5 \\ S_1 \\ \end{array} & \begin{array}{c} S_2 \\ S_2 S_3 S_4 \\ S_1 S_1 S_2 S_3 S_4 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 \\ S_2 S_3 S_4 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_1 S_2 S_3 \\ S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_2 S_3 S_4 S_5 \\ S_1 S_2 S_3 \\ S_3 \\ \end{array} & \begin{array}{c} S_4 \\ S_1 S_2 S_4 \\ S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_2 S_3 S_4 S_5 \\ S_1 S_2 S_4 \\ S_4 \\ \end{array} & \begin{array}{c} S_5 \\ S_1 S_5 S_5 \\ S_1 S_3 S_6 S_7 \\ S_1 S_1 S_2 S_4 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_3 S_4 S_5 S_1 S_5 \\ S_5 \\ \end{array} \end{array} [/math]


Irreducible characters

All irreducible characters have height zero.


Back to [math](C_2)^4[/math]