M(16,14,1)
Revision as of 13:25, 27 November 2019 by CesareGArdito (talk | contribs) (Created page with "{{blockbox |title = M(16,14,1) - <math>k((C_2)^4)</math> |image = |representative = <math>k((C_2)^4)</math> |defect = <math>(C_2)^4</math> |inertialquot...")
M(16,14,1) - [math]k((C_2)^4)[/math]
[[File: |250px]]
Representative: | [math]k((C_2)^4)[/math] |
---|---|
Defect groups: | [math](C_2)^4[/math] |
Inertial quotients: | [math]1[/math] |
[math]k(B)=[/math] | 16 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 16 \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O} ((C_2)^4)[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | [math](C_2)^4:GL_4(2)[/math] |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
These are nilpotent blocks.
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(16,14,1), then [math]B[/math] is in M(16,14,1), M(16,14,3), M(16,14,4), M(16,14,5), M(16,14,6), M(16,14,8), M(16,14,11),M(16,14,13) or M(16,14,16).
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{c} S_1 \\ S_1 S_1 S_1 \\ S_1 S_1 S_1 S_1 S_1 S_1 \\ S_1 S_1 S_1 \\ S_1 \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.