M(32,51,29)

From Block library
Revision as of 13:14, 9 December 2019 by CesareGArdito (talk | contribs) (Created page with "{{blockbox |title = M(32,51,29) - <math>B_0(k({\rm Aut}(SL_2(8)) \times A_5))</math> |image =   |representative = <math>B_0(k({\rm Aut}(SL_2(8)) \times A_5))</math> |d...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
M(32,51,29) - [math]B_0(k({\rm Aut}(SL_2(8)) \times A_5))[/math]
[[File: |250px]]
Representative: [math]B_0(k({\rm Aut}(SL_2(8)) \times A_5))[/math]
Defect groups: [math](C_2)^5[/math]
Inertial quotients: [math](C_{7}:C_3) \times C_3[/math]
[math]k(B)=[/math] 32
[math]l(B)=[/math] 15
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: See below.
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}({\rm Aut}(SL_2(8)) \times A_5))[/math]
Decomposition matrices: See below.
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(32,51,24), M(32,51,25), M(32,51,26), M(32,51,27), M(32,51,28)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:


Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(32,51,29), then [math]B[/math] is in M(32,51,16) or M(32,51,29).

Projective indecomposable modules

Irreducible characters

All irreducible characters have height zero.

Cartan matrix

[math]\left( \begin{array}{ccccccccccccccccccccc} 16 & 8 & 8 & 4 & 4 & 8 & 8 & 4 & 4 & 16 & 8 & 8 & 8 & 4 & 4 \\ 8 & 16 & 8 & 8 & 4 & 4 & 4 & 4 & 8 & 16 & 8 & 8 & 8 & 4 & 4 \\ 8 & 8 & 16 & 4 & 8 & 4 & 4 & 8 & 4 & 16 & 8 & 8 & 8 & 4 & 4 \\ 4 & 8 & 4 & 8 & 2 & 4 & 2 & 4 & 4 & 8 & 4 & 8 & 4 & 4 & 2 \\ 4 & 4 & 8 & 2 & 8 & 2 & 4 & 4 & 4 & 8 & 4 & 4 & 8 & 2 & 4 \\ 8 & 4 & 4 & 4 & 2 & 8 & 4 & 4 & 2 & 8 & 4 & 8 & 4 & 4 & 2 \\ 8 & 4 & 4 & 2 & 4 & 4 & 8 & 2 & 4 & 8 & 4 & 4 & 8 & 2 & 4 \\ 4 & 4 & 8 & 4 & 4 & 4 & 2 & 8 & 2 & 8 & 4 & 8 & 4 & 4 & 2 \\ 4 & 8 & 4 & 4 & 4 & 2 & 4 & 2 & 8 & 8 & 4 & 4 & 8 & 2 & 4 \\ 16 & 16 & 16 & 8 & 8 & 8 & 8 & 8 & 8 & 32 & 12 & 16 & 16 & 6 & 6 \\ 8 & 8 & 8 & 4 & 4 & 4 & 4 & 4 & 4 & 12 & 8 & 6 & 6 & 4 & 4 \\ 8 & 8 & 8 & 8 & 4 & 8 & 4 & 8 & 4 & 16 & 6 & 16 & 8 & 6 & 3 \\ 8 & 8 & 8 & 4 & 8 & 4 & 8 & 4 & 8 & 16 & 6 & 8 & 16 & 3 & 6 \\ 4 & 4 & 4 & 4 & 2 & 4 & 2 & 4 & 2 & 6 & 4 & 6 & 3 & 4 & 2 \\ 4 & 4 & 4 & 2 & 4 & 2 & 4 & 2 & 4 & 6 & 4 & 3 & 6 & 2 & 4 \end{array}\right)[/math]

Decomposition matrix

[math]\left( \begin{array}{ccccccccccccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \end{array}\right)[/math]

Back to [math](C_2)^5[/math]