Difference between revisions of "M(16,14,7)"
(Created page with "{{blockbox |title = M(16,14,7) - <math>B_0(k(\C_2 \times SL_2(8)))</math> |image = |representative = <math>B_0(k(\C_2 \times SL_2(8)))</math> |defect = (C2)%5E4|<m...") |
|||
Line 1: | Line 1: | ||
{{blockbox | {{blockbox | ||
− | |title = M(16,14,7) - <math>B_0(k( | + | |title = M(16,14,7) - <math>B_0(k(C_2 \times SL_2(8)))</math> |
|image = | |image = | ||
− | |representative = <math>B_0(k( | + | |representative = <math>B_0(k(C_2 \times SL_2(8)))</math> |
|defect = [[(C2)%5E4|<math>(C_2)^4</math>]] | |defect = [[(C2)%5E4|<math>(C_2)^4</math>]] | ||
|inertialquotients = <math>C_7</math> | |inertialquotients = <math>C_7</math> | ||
Line 21: | Line 21: | ||
|inertial-morita-inv? = Yes | |inertial-morita-inv? = Yes | ||
|O-morita? = Yes | |O-morita? = Yes | ||
− | |O-morita = <math>B_0(\mathcal{O}( | + | |O-morita = <math>B_0(\mathcal{O}(C_2 \times SL_2(8)))</math> |
|decomp = See below | |decomp = See below | ||
|O-morita-frob = 1 | |O-morita-frob = 1 |
Revision as of 14:49, 27 November 2019
Representative: | [math]B_0(k(C_2 \times SL_2(8)))[/math] |
---|---|
Defect groups: | [math](C_2)^4[/math] |
Inertial quotients: | [math]C_7[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 7 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccc} 16 & 8 & 8 & 8 & 4 & 4 & 4 \\ & 8 & 8 & 4 & 4 & 4 & 0 & 2 \\ & 8 & 4 & 8 & 4 & 2 & 4 & 0 \\ & 8 & 4 & 4 & 8 & 0 & 2 & 4 \\ & 4 & 4 & 2 & 0 & 4 & 0 & 0 \\ & 4 & 0 & 4 & 2 & 0 & 4 & 0 \\ & 4 & 2 & 0 & 4 & 0 & 0 & 4 \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}(C_2 \times SL_2(8)))[/math] |
Decomposition matrices: | See below |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(16,14,6) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(16,14,7), then [math]B[/math] is in M(16,14,7) or M(16,14,15).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3, S_4, S_5, S_6, S_7[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccccccc} \begin{array}{c} S_1 \\ S_1 S_2 S_3 S_4\\ S_1 S_1 S_1 S_2 S_3 S_4 S_5 S_6 S_7 \\ S_1 S_1 S_1 S_2 S_2 S_3 S_3 S_4 S_4 S_5 S_6 S_7 S_1 S_1 S_1 S_2 S_2 S_3 S_3 S_4 S_4 S_5 S_6 S_7\\ S_1 S_1 S_1 S_1 S_2 S_3 S_4 S_5 S_6 S_7 \\ S_1 S_2 S_3 S_4\\ S_1 \\ \end{array} & \begin{array}{c} S_2 \\ S_1 S_2 S_5 \\ S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 S_7 \\ S_1 S_1 S_2 S_3 S_4 S_7 \\ S_1 S_2 S_3 S_4 S_5 \\ S_1 S_2 S_5 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_1 S_3 S_6 \\ S_1 S_2 S_3 S_4 S_6 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_1 S_2 S_3 S_4 S_5 \\ S_1 S_2 S_3 S_4 S_6 \\ S_1 S_3 S_6 \\ S_3 \\ \end{array} & \begin{array}{c} S_4 \\ S_1 S_4 S_7 \\ S_1 S_2 S_3 S_4 S_7 \\ S_1 S_1 S_2 S_3 S_4 S_6 \\ S_1 S_1 S_2 S_3 S_4 S_6 \\ S_1 S_2 S_3 S_4 S_7 \\ S_1 S_4 S_7 \\ S_4 \\ \end{array} & \begin{array}{c} S_5 \\ S_2 S_5 \\ S_1 S_2 \\ S_1 S_3 \\ S_1 S_3 \\ S_1 S_2 \\ S_2 S_5 S_5 \\ \end{array} & \begin{array}{c} S_6 \\ S_3 S_6 \\ S_1 S_3 \\ S_1 S_4 \\ S_1 S_4 \\ S_1 S_3 \\ S_3 S_6 S_6 \\ \end{array} & \begin{array}{c} S_7 \\ S_4 S_7 \\ S_1 S_4 \\ S_1 S_2 \\ S_1 S_2 \\ S_1 S_4 \\ S_4 S_7 S_7 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Decomposition matrix
[math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right)[/math]