Difference between revisions of "Guide to contributing: Code"
(Created page with "The code in this section computes the Cartan. The output is formatted in LaTeX, so it can be copied and pasted easily on the relevant block page. == Magma code == The follow...") |
(No difference)
|
Revision as of 16:47, 9 December 2019
The code in this section computes the Cartan. The output is formatted in LaTeX, so it can be copied and pasted easily on the relevant block page.
Magma code
The following code, written by Claudio Marchi and Cesare G. Ardito, can usually be run on the free [Magma online calculator], as long as the involved group is small.
LoewyStructure:= function(W,p,k,S,irrs) Z:=W; t:=0; maxlength:=100; M:=ZeroMatrix(Integers(),maxlength,maxlength); repeat t:=t+1; J:=JacobsonRadical(W); V:=W/J; V:=ChangeRing(V,GF(p^k)); if IsDecomposable(V) then indsum:=IndecomposableSummands(V); for i in [1..#indsum] do for j in S do V7:=indsum[i]; U:=irrs[j]; U:=ChangeRing(U,GF(p^k)); V:=ChangeRing(V7,GF(p^k)); if IsIsomorphic(V,U) then M[t][i]:=j; continue i; end if; end for; end for; else for j in S do U:=irrs[j]; U:=ChangeRing(U,GF(p^k)); V:=ChangeRing(V,GF(p^k)); if IsIsomorphic(V,U) then M[t][1]:=j; break j; end if; end for; end if; W:=J; if IsIrreducible(W) then t:=t+1; for j in S do U:=irrs[j]; U:=ChangeRing(U,GF(p^k)); V:=ChangeRing(W,GF(p^k)); if IsIsomorphic(V,U) then M[t][1]:=j; break j; end if; end for; end if; until IsIrreducible(W); printf("\n"); for i in [1..maxlength] do flag:=0; for j in [1..maxlength] do if(not (M[i][j] eq 0)) then flag:=1; printf "S_\{%o\} ", M[i][j]; end if; end for; if(flag eq 1) then printf("\\\\ \n"); end if; end for; print "The structure above is the Loewy structure of"; return Z; end function; PrintLatex:= function(M) for i in [1..NumberOfRows(M)-1] do for j in [1..NumberOfColumns(M)-1] do printf "%o & ", M[i,j]; end for; printf "%o \\\\ \n", M[i,NumberOfColumns(M)]; end for; for j in [1..NumberOfColumns(M)-1] do printf "%o & ", M[NumberOfRows(M),j]; end for; printf "%o \n", M[NumberOfRows(M),NumberOfColumns(M)]; return " "; end function; /* Input data: a group, a prime and an exponent such that GF(p^n) contains all the necessary roots of unity */ G:=SmallGroup(2,1); p:=2; splittingexponent:=1; /* End input data*/ PrintLatex(AbsoluteCartanMatrix(G,GF(p^splittingexponent))); printf("\n"); PrintLatex(DecompositionMatrix(G,GF(p^splittingexponent))); irrs:=AbsolutelyIrreducibleModules(G, GF(p^splittingexponent)); P:=ProjectiveIndecomposableModules(G, GF(p^splittingexponent)); for i in [1..#P] do LoewyStructure(P[i],p,splittingexponent,[1..#irrs],irrs); end for;
Note that, if [math]G[/math] has more than one block, some manual work on the output is needed to isolate the relevant submatrices and indecomposable projective modules that belong to the block that is being investigated.