Difference between revisions of "M(32,51,31)"

From Block library
Jump to: navigation, search
(Projective indecomposable modules)
(Projective indecomposable modules)
Line 170: Line 170:
 
S_{8} \\
 
S_{8} \\
 
   \end{array}
 
   \end{array}
&
+
\end{array}
 +
</math>
 +
 
 +
<br>&nbsp; <br>
 +
 
 +
<math>\begin{array}{ccccc}
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{9} \\
 
S_{9} \\
Line 184: Line 189:
 
S_{9} \\
 
S_{9} \\
 
   \end{array}
 
   \end{array}
\end{array}
+
&
</math>
 
 
 
<br>&nbsp; <br>
 
 
 
<math>\begin{array}{ccccc}
 
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{10} \\
 
S_{10} \\

Revision as of 16:13, 9 December 2019

M(32,51,32) - [math]B_0(k({\rm Aut}SL_2(32)))[/math]
[[File: |250px]]
Representative: [math]B_0(k({\rm Aut}SL_2(32)))[/math]
Defect groups: [math](C_2)^5[/math]
Inertial quotients: [math]C_{31}:C_5[/math]
[math]k(B)=[/math] 16
[math]l(B)=[/math] 11
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: See below.
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}({\rm Aut}SL_2(32)))[/math]
Decomposition matrices: See below.
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(32,51,30)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:


Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(32,51,31), then [math]B[/math] is in M(32,51,23) or M(32,51,31).

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_{11}[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccccc} \begin{array}{c} S_{1} \\ S_{6} \\ S_{5} S_{4} S_{3} S_{2} S_{1} S_{7} S_{8} \\ S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} \\ S_{2} S_{2} S_{1} S_{4} S_{3} S_{5} S_{1} S_{3} S_{5} S_{4} S_{7} S_{8} S_{8} S_{7} S_{8} S_{7} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} S_{9} S_{10} \\ S_{5} S_{5} S_{1} S_{3} S_{4} S_{3} S_{1} S_{2} S_{4} S_{2} S_{8} S_{7} S_{7} S_{8} S_{7} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} \\ S_{1} S_{5} S_{4} S_{3} S_{2} S_{8} S_{7} \\ S_{6} \\ S_{1} \\ \end{array} & \begin{array}{c} S_{2} \\ S_{6} \\ S_{4} S_{3} S_{2} S_{5} S_{1} S_{7} S_{8} \\ S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} \\ S_{4} S_{5} S_{3} S_{2} S_{2} S_{3} S_{4} S_{1} S_{1} S_{5} S_{7} S_{8} S_{8} S_{7} S_{7} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} S_{10} S_{9} \\ S_{3} S_{5} S_{2} S_{5} S_{4} S_{4} S_{1} S_{1} S_{2} S_{3} S_{7} S_{8} S_{7} S_{8} S_{8} S_{7} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} \\ S_{4} S_{5} S_{2} S_{3} S_{1} S_{7} S_{8} \\ S_{6} \\ S_{2} \\ \end{array} & \begin{array}{c} S_{3} \\ S_{6} \\ S_{5} S_{4} S_{3} S_{1} S_{2} S_{8} S_{7} \\ S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} \\ S_{5} S_{1} S_{5} S_{2} S_{1} S_{4} S_{4} S_{2} S_{3} S_{3} S_{8} S_{8} S_{7} S_{7} S_{7} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} S_{9} S_{10} \\ S_{4} S_{3} S_{3} S_{5} S_{5} S_{2} S_{1} S_{2} S_{4} S_{1} S_{8} S_{7} S_{7} S_{8} S_{7} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} \\ S_{4} S_{1} S_{3} S_{5} S_{2} S_{7} S_{8} \\ S_{6} \\ S_{3} \\ \end{array} \end{array} [/math]


 

[math]\begin{array}{ccccc} \begin{array}{c} S_{4} \\ S_{6} \\ S_{3} S_{2} S_{5} S_{4} S_{1} S_{8} S_{7} \\ S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} \\ S_{1} S_{5} S_{2} S_{2} S_{3} S_{3} S_{1} S_{5} S_{4} S_{4} S_{7} S_{8} S_{8} S_{8} S_{7} S_{7} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} S_{10} S_{9} \\ S_{5} S_{3} S_{1} S_{4} S_{4} S_{2} S_{2} S_{1} S_{5} S_{3} S_{8} S_{7} S_{7} S_{8} S_{7} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} \\ S_{5} S_{3} S_{4} S_{1} S_{2} S_{8} S_{7} \\ S_{6} \\ S_{4} \\ \end{array} & \begin{array}{c} S_{5} \\ S_{6} \\ S_{1} S_{5} S_{4} S_{3} S_{2} S_{8} S_{7} \\ S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} \\ S_{5} S_{3} S_{4} S_{4} S_{1} S_{5} S_{2} S_{1} S_{2} S_{3} S_{8} S_{7} S_{8} S_{8} S_{7} S_{7} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} S_{10} S_{9} \\ S_{4} S_{2} S_{2} S_{3} S_{5} S_{5} S_{1} S_{3} S_{1} S_{4} S_{7} S_{7} S_{8} S_{8} S_{8} S_{7} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} \\ S_{2} S_{5} S_{3} S_{4} S_{1} S_{8} S_{7} \\ S_{6} \\ S_{5} \\ \end{array} \end{array} [/math]


 

[math]\begin{array}{ccccc} \begin{array}{c} S_{6} \\ S_{4} S_{1} S_{3} S_{2} S_{5} S_{7} S_{8} S_{8} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{10} S_{9} \\ S_{5} S_{1} S_{1} S_{3} S_{3} S_{1} S_{3} S_{3} S_{2} S_{2} S_{5} S_{2} S_{5} S_{4} S_{1} S_{5} S_{2} S_{4} S_{4} S_{4} S_{7} S_{7} S_{8} S_{8} S_{7} S_{8} S_{7} S_{8} S_{7} S_{8} S_{8} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{10} S_{9} S_{10} S_{9} S_{9} S_{10} \\ S_{5} S_{3} S_{1} S_{2} S_{3} S_{4} S_{5} S_{5} S_{2} S_{5} S_{2} S_{5} S_{2} S_{1} S_{2} S_{4} S_{3} S_{4} S_{3} S_{3} S_{4} S_{5} S_{4} S_{1} S_{2} S_{1} S_{4} S_{3} S_{1} S_{1} S_{7} S_{8} S_{8} S_{8} S_{8} S_{8} S_{8} S_{8} S_{7} S_{7} S_{7} S_{7} S_{8} S_{8} S_{7} S_{8} S_{7} S_{7} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{9} S_{10} S_{10} S_{10} S_{9} S_{9} S_{10} \\ S_{2} S_{4} S_{5} S_{4} S_{5} S_{4} S_{3} S_{4} S_{3} S_{2} S_{3} S_{1} S_{3} S_{5} S_{2} S_{1} S_{1} S_{5} S_{1} S_{2} S_{7} S_{7} S_{8} S_{7} S_{8} S_{7} S_{8} S_{8} S_{7} S_{8} S_{8} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} S_{10} \\ S_{2} S_{1} S_{5} S_{4} S_{3} S_{8} S_{8} S_{7} \\ S_{6} \\ \end{array} \end{array} [/math]


 

[math]\begin{array}{ccccc} \begin{array}{c} S_{7} \\ S_{6} S_{9} S_{10} \\ S_{5} S_{1} S_{4} S_{3} S_{2} S_{8} S_{7} S_{7} S_{8} S_{11} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} S_{10} \\ S_{4} S_{4} S_{5} S_{1} S_{5} S_{3} S_{4} S_{2} S_{5} S_{1} S_{2} S_{3} S_{3} S_{2} S_{1} S_{7} S_{7} S_{8} S_{7} S_{8} S_{8} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{9} \\ S_{1} S_{2} S_{1} S_{1} S_{4} S_{4} S_{2} S_{2} S_{5} S_{3} S_{4} S_{3} S_{3} S_{5} S_{5} S_{8} S_{7} S_{8} S_{7} S_{8} S_{7} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{10} S_{9} \\ S_{1} S_{3} S_{5} S_{4} S_{2} S_{7} S_{7} S_{8} S_{8} S_{11} \\ S_{6} S_{10} S_{9} \\ S_{7} \\ \end{array} & \begin{array}{c} S_{8} \\ S_{6} S_{6} S_{10} \\ S_{1} S_{4} S_{5} S_{2} S_{3} S_{7} S_{8} S_{7} S_{8} S_{8} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} \\ S_{4} S_{5} S_{2} S_{4} S_{5} S_{5} S_{4} S_{2} S_{1} S_{1} S_{3} S_{1} S_{3} S_{3} S_{2} S_{8} S_{8} S_{7} S_{8} S_{8} S_{8} S_{7} S_{8} S_{7} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{10} S_{10} \\ S_{4} S_{4} S_{4} S_{2} S_{1} S_{1} S_{5} S_{1} S_{3} S_{3} S_{2} S_{2} S_{5} S_{5} S_{3} S_{8} S_{8} S_{7} S_{7} S_{8} S_{8} S_{7} S_{8} S_{8} \\ S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{6} S_{10} S_{9} \\ S_{3} S_{5} S_{4} S_{1} S_{2} S_{8} S_{7} S_{7} S_{8} S_{8} \\ S_{6} S_{6} S_{10} \\ S_{8} \\ \end{array} \end{array} [/math]


 

[math]\begin{array}{ccccc} \begin{array}{c} S_{9} \\ S_{7} S_{11} \\ S_{6} S_{10} S_{9} \\ S_{3} S_{1} S_{4} S_{5} S_{2} S_{8} S_{7} \\ S_{6} S_{6} S_{6} \\ S_{2} S_{5} S_{3} S_{5} S_{1} S_{4} S_{3} S_{4} S_{1} S_{2} S_{7} \\ S_{6} S_{6} S_{6} \\ S_{4} S_{3} S_{2} S_{1} S_{5} S_{8} S_{7} \\ S_{6} S_{9} S_{10} \\ S_{7} S_{11} \\ S_{9} \\ \end{array} & \begin{array}{c} S_{10} \\ S_{7} S_{8} \\ S_{6} S_{6} S_{9} \\ S_{2} S_{4} S_{3} S_{1} S_{5} S_{8} S_{7} S_{7} \\ S_{6} S_{6} S_{6} S_{6} S_{10} \\ S_{1} S_{3} S_{3} S_{5} S_{5} S_{2} S_{4} S_{4} S_{1} S_{2} S_{8} S_{8} S_{8} \\ S_{6} S_{6} S_{6} S_{6} S_{10} \\ S_{3} S_{2} S_{1} S_{5} S_{4} S_{7} S_{7} S_{8} \\ S_{6} S_{6} S_{9} \\ S_{8} S_{7} \\ S_{10} \\ \end{array} & \begin{array}{c} S_{11} \\ S_{9} \\ S_{7} \\ S_{6} \\ S_{1} S_{4} S_{3} S_{5} S_{2} \\ S_{6} \\ S_{2} S_{1} S_{3} S_{4} S_{5} \\ S_{6} \\ S_{7} \\ S_{9} \\ S_{11} \\ \end{array} \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Cartan matrix

[math]\left( \begin{array}{ccc} 8 & 6 & 6 & 6 & 6 & 16 & 8 & 8 & 4 & 4 & 2 \\ 6 & 8 & 6 & 6 & 6 & 16 & 8 & 8 & 4 & 4 & 2 \\ 6 & 6 & 8 & 6 & 6 & 16 & 8 & 8 & 4 & 4 & 2 \\ 6 & 6 & 6 & 8 & 6 & 16 & 8 & 8 & 4 & 4 & 2 \\ 6 & 6 & 6 & 6 & 8 & 16 & 8 & 8 & 4 & 4 & 2 \\ 16 & 16 & 16 & 16 & 16 & 48 & 20 & 28 & 8 & 12 & 3 \\ 8 & 8 & 8 & 8 & 8 & 20 & 12 & 10 & 5 & 6 & 2 \\ 8 & 8 & 8 & 8 & 8 & 28 & 10 & 20 & 2 & 7 & 0 \\ 4 & 4 & 4 & 4 & 4 & 8 & 5 & 2 & 4 & 2 & 2 \\ 4 & 4 & 4 & 4 & 4 & 12 & 6 & 7 & 2 & 4 & 0 \\ 2 & 2 & 2 & 2 & 2 & 3 & 2 & 0 & 2 & 0 & 2 \end{array} \right)[/math]

Decomposition matrix

[math]\left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 3 & 2 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 4 & 1 & 3 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 & 1 & 0 & 1 \end{array}\right)[/math]

Back to [math](C_2)^5[/math]