Difference between revisions of "M(32,51,30)"
(Created page with "{{blockbox |title = M(32,51,11) - <math>k(((C_2)^5 : (C_{31}:C_5))</math> |image = |representative = <math>k(((C_2)^5 : (C_{31}:C_5))</math> |defect = (C2)%5E5|<ma...") |
(No difference)
|
Revision as of 13:48, 9 December 2019
Representative: | [math]k(((C_2)^5 : (C_{31}:C_5))[/math] |
---|---|
Defect groups: | [math](C_2)^5[/math] |
Inertial quotients: | [math]C_{31}:C_5[/math] |
[math]k(B)=[/math] | 16 |
[math]l(B)=[/math] | 11 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | See below. |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O}(((C_2)^5 : (C_{31}:C_5))[/math] |
Decomposition matrices: | See below. |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(32,51,31) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(32,51,30), then [math]B[/math] is in M(32,51,22) or M(32,51,30).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_{11}[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccccc} \begin{array}{c} S_{1} \\ S_{7} \\ S_{9} S_{11} \\ S_{8} S_{10} \\ S_{6} \\ S_{1} \\ \end{array} & \begin{array}{c} S_{2} \\ S_{7} \\ S_{11} S_{9} \\ S_{8} S_{10} \\ S_{6} \\ S_{2} \\ \end{array} & \begin{array}{c} S_{3} \\ S_{7} \\ S_{9} S_{11} \\ S_{10} S_{8} \\ S_{6} \\ S_{3} \\ \end{array} & \begin{array}{c} S_{4} \\ S_{7} \\ S_{11} S_{9} \\ S_{10} S_{8} \\ S_{6} \\ S_{4} \\ \end{array} & \begin{array}{c} S_{5} \\ S_{7} \\ S_{9} S_{11} \\ S_{8} S_{10} \\ S_{6} \\ S_{5} \\ \end{array} \end{array} [/math]
[math]\begin{array}{ccccc} \begin{array}{c} S_{6} \\ S_{5} S_{4} S_{1} S_{2} S_{3} S_{9} S_{6} S_{8} S_{7} \\ S_{11} S_{9} S_{7} S_{7} S_{8} S_{10} S_{11} S_{6} S_{7} S_{7} \\ S_{6} S_{8} S_{11} S_{10} S_{10} S_{9} S_{11} S_{11} S_{9} S_{9} \\ S_{8} S_{8} S_{6} S_{10} S_{10} \\ S_{6} \\ \end{array} & \begin{array}{c} S_{7} \\ S_{9} S_{11} S_{9} S_{11} S_{7} \\ S_{7} S_{11} S_{11} S_{8} S_{10} S_{9} S_{10} S_{10} S_{8} S_{8} \\ S_{6} S_{7} S_{6} S_{9} S_{6} S_{8} S_{10} S_{10} S_{11} S_{6} \\ S_{5} S_{1} S_{2} S_{4} S_{3} S_{6} S_{9} S_{7} S_{8} \\ S_{7} \\ \end{array} & \begin{array}{c} S_{8} \\ S_{10} S_{6} S_{7} S_{6} S_{11} \\ S_{3} S_{5} S_{4} S_{2} S_{1} S_{11} S_{6} S_{10} S_{9} S_{7} S_{8} S_{8} S_{9} S_{9} \\ S_{8} S_{6} S_{11} S_{11} S_{7} S_{7} S_{8} S_{7} S_{10} S_{10} \\ S_{6} S_{9} S_{11} S_{9} S_{10} \\ S_{8} \\ \end{array} \end{array} [/math]
[math]\begin{array}{ccccc} \begin{array}{c} S_{9} \\ S_{7} S_{8} S_{10} S_{11} S_{8} \\ S_{9} S_{11} S_{7} S_{6} S_{11} S_{9} S_{6} S_{6} S_{10} S_{10} \\ S_{3} S_{4} S_{2} S_{5} S_{1} S_{8} S_{6} S_{8} S_{8} S_{10} S_{7} S_{11} S_{9} S_{9} \\ S_{11} S_{7} S_{7} S_{10} S_{6} \\ S_{9} \\ \end{array} & \begin{array}{c} S_{10} \\ S_{9} S_{10} S_{6} S_{6} S_{8} \\ S_{4} S_{2} S_{3} S_{5} S_{1} S_{9} S_{11} S_{6} S_{6} S_{10} S_{7} S_{7} S_{8} S_{8} \\ S_{7} S_{6} S_{8} S_{9} S_{11} S_{10} S_{9} S_{11} S_{7} S_{7} \\ S_{10} S_{11} S_{11} S_{9} S_{8} \\ S_{10} \\ \end{array} & \begin{array}{c} S_{11} \\ S_{10} S_{8} S_{9} S_{10} S_{11} \\ S_{6} S_{10} S_{10} S_{11} S_{6} S_{8} S_{7} S_{9} S_{8} S_{6} \\ S_{5} S_{3} S_{1} S_{4} S_{2} S_{9} S_{6} S_{6} S_{10} S_{8} S_{11} S_{9} S_{7} S_{7} \\ S_{8} S_{11} S_{7} S_{7} S_{9} \\ S_{11} \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Cartan matrix
[math]\left( \begin{array}{ccc} 2 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 6 & 5 & 5 & 5 & 5 & 5 \\ 1 & 1 & 1 & 1 & 1 & 5 & 6 & 5 & 5 & 5 & 5 \\ 1 & 1 & 1 & 1 & 1 & 5 & 5 & 6 & 5 & 5 & 5 \\ 1 & 1 & 1 & 1 & 1 & 5 & 5 & 5 & 6 & 5 & 5 \\ 1 & 1 & 1 & 1 & 1 & 5 & 5 & 5 & 5 & 6 & 5 \\ 1 & 1 & 1 & 1 & 1 & 5 & 5 & 5 & 5 & 5 & 6 \end{array} \right)[/math]
Decomposition matrix
[math]\left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)[/math]